Concerns regarding Large Language Models (LLMs) to memorize and disclose private information, particularly Personally Identifiable Information (PII), become prominent within the community. Many efforts have been made to mitigate the privacy risks.However, the mechanism through which LLMs memorize PII remains poorly understood. To bridge this gap, we introduce a pioneering method for pinpointing PII-sensitive neurons (privacy neurons) within LLMs. Our method employs learnable binary weight masks to localize specific neurons that account for the memorization of PII in LLMs through adversarial training. Our investigations discover that PII is memorized by a small subset of neurons across all layers, which shows the property of PII specificity. Furthermore, we propose to validate the potential in PII risk mitigation by deactivating the localized privacy neurons. Both quantitative and qualitative experiments demonstrate the effectiveness of our neuron localization algorithm.
Large language models (LLMs) have demonstrated emergent capabilities across diverse reasoning tasks via popular Chains-of-Thought (COT) prompting. However, such a simple and fast COT approach often encounters limitations in dealing with complicated problems, while a thorough method, which considers multiple reasoning pathways and verifies each step carefully, results in slower inference. This paper addresses the challenge of enabling LLMs to autonomously select between fast and slow inference methods, thereby optimizing both efficiency and effectiveness. We introduce a dynamic decision-making framework that categorizes tasks into two distinct pathways: ‘Fast,’ designated for tasks where the LLM quickly identifies a high-confidence solution, and ‘Slow,’ allocated for tasks that the LLM perceives as complex and for which it has low confidence in immediate solutions as well as requiring more reasoning paths to verify. Experiments on five popular reasoning benchmarks demonstrated the superiority of the DynaThink over baselines. For example, when we compared it to strong COT with self-consistency baseline on the complicated MATH dataset, DynaThink achieved more than 3% increase in accuracy with lower cost. The code will be made available upon publication.
Evaluating the bias of LLMs becomes more crucial with their rapid development. However, existing evaluation approaches rely on fixed-form outputs and cannot adapt to the flexible open-text generation scenarios of LLMs (e.g., sentence completion and question answering). To address this, we introduce BiasAlert, a plug-and-play tool designed to detect social bias in open-text generations of LLMs. BiasAlert integrates external human knowledge with its inherent reasoning capabilities to detect bias reliably. Extensive experiments demonstrate that BiasAlert significantly outperforms existing state-of-the-art methods like GPT-4-as-Judge in detecting bias. Furthermore, through application studies, we showcase the utility of BiasAlert in reliable LLM fairness evaluation and bias mitigation across various scenarios. Model and code will be publicly released.
General-purpose Large Language Models (LLMs) like GPT-4 have achieved remarkable advancements in machine translation (MT) by leveraging extensive web content. On the other hand, translation-specific LLMs are built by pre-training on domain-specific monolingual corpora and fine-tuning with human-annotated translation data. Despite the superior performance, these methods either demand an unprecedented scale of computing and data or substantial human editing and annotation efforts. In this paper, we develop MT-Ladder, a novel model-agnostic and cost-effective tool to refine the performance of general LLMs for MT. MT-Ladder is trained on pseudo-refinement triplets which can be easily obtained from existing LLMs without additional human cost. During training, we propose a hierarchical fine-tuning strategy with an easy-to-hard schema, improving MT-Ladder’s refining performance progressively. The trained MT-Ladder can be seamlessly integrated with any general-purpose LLMs to boost their translation performance. By utilizing Gemma-2B/7B as the backbone, MT-Ladder-2B can elevate raw translations to the level of top-tier open-source models (e.g., refining BigTranslate-13B with +6.91 BLEU and +3.52 COMET for XX→En), and MT-Ladder-7B can further enhance model performance to be on par with the state-of-the-art GPT-4. Extensive ablation and analysis corroborate the effectiveness of MT-Ladder in diverse settings.
Artificial intelligence has advanced in Medical Visual Question Answering (Med-VQA), but prevalent research tends to focus on the accuracy of the answers, often overlooking the reasoning paths and interpretability, which are crucial in clinical settings. Besides, current Med-VQA algorithms, typically reliant on singular models, lack the robustness needed for real-world medical diagnostics which usually require collaborative expert evaluation. To address these shortcomings, this paper presents MedCoT, a novel hierarchical expert verification reasoning chain method designed to enhance interpretability and accuracy in biomedical imaging inquiries. MedCoT is predicated on two principles: The necessity for explicit reasoning paths in Med-VQA and the requirement for multi-expert review to formulate accurate conclusions. The methodology involves an Initial Specialist proposing diagnostic rationales, followed by a Follow-up Specialist who validates these rationales, and finally, a consensus is reached through a vote among a sparse Mixture of Experts within the locally deployed Diagnostic Specialist, which then provides the definitive diagnosis. Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches, providing significant improvements in performance and interpretability.
Recent advancements in general-purpose or domain-specific multimodal large language models (LLMs) have witnessed remarkable progress for medical decision-making. However, they are designated for specific classification or generative tasks, and require model training or finetuning on large-scale datasets with sizeable parameters and tremendous computing, hindering their clinical utility across diverse resource-constrained scenarios in practice. In this paper, we propose a novel and lightweight framework Med-MoE (Mixture-of-Experts) that tackles both discriminative and generative multimodal medical tasks. The learning of Med-MoE consists of three steps: multimodal medical alignment, Instruction tuning and routing, and domain-specific MoE tuning. After aligning multimodal medical images with LLM tokens, we then enable the model for different multimodal medical tasks with instruction tuning, together with a trainable router tailored for expert selection across input modalities. Finally, the model is tuned by integrating the router with multiple domain-specific experts, which are selectively activated and further empowered by meta experts. Comprehensive experiments on both open- and close-end medical question answering (Med-VQA) and image classification tasks across datasets such as VQA-RAD, SLAKE and Path-VQA demonstrate that our model can achieve performance superior to or on par with state-of-the-art baselines, while only requiring approximately 30%-50% of activated model parameters. Extensive analysis and ablations corroborate the effectiveness and practical utility of our method.
Vision-language models like CLIP, utilizing class proxies derived from class name text features, have shown a notable capability in zero-shot medical image diagnosis which is vital in scenarios with limited disease databases or labeled samples. However, insufficient medical text precision and the modal disparity between text and vision spaces pose challenges for such paradigm. We show analytically and experimentally that enriching medical texts with detailed descriptions can markedly enhance the diagnosis performance, with the granularity and phrasing of these enhancements having a crucial impact on CLIP’s understanding of medical images; and learning proxies within the vision domain can effectively circumvent the modal gap issue. Based on our analysis, we propose a medical visual proxy learning framework comprising two key components: a text refinement module that create high quality medical text descriptions, and a stable Sinkhorn algorithm for an efficient generation of pseudo labels which further guide the visual proxy learning. Our method elevates the Vanilla CLIP inference by supplying meticulously crafted clues to leverage CLIP’s existing interpretive power and using the feature of refined texts to bridge the vision-text gap. The effectiveness and robustness of our method are clearly demonstrated through extensive experiments. Notably, our method outperforms the state-of-the-art zero-shot medical image diagnosis by a significant margin, ranging from 1.69% to 15.31% on five datasets covering various diseases, confirming its immense potential in zero-shot diagnosis across diverse medical applications.
Exploring the application of powerful large language models (LLMs) on the named entity recognition (NER) task has drawn much attention recently. This work pushes the performance boundary of zero-shot NER with LLMs by proposing a training-free self-improving framework, which utilizes an unlabeled corpus to stimulate the self-learning ability of LLMs. First, we use the LLM to make predictions on the unlabeled corpus using self-consistency and obtain a self-annotated dataset. Second, we explore various strategies to select reliable annotations to form a reliable self-annotated dataset. Finally, for each test input, we retrieve demonstrations from the reliable self-annotated dataset and perform inference via in-context learning. Experiments on four benchmarks show substantial performance improvements achieved by our framework. Through comprehensive experimental analysis, we find that increasing the size of unlabeled corpus or iterations of self-improving does not guarantee further improvement, but the performance might be boosted via more advanced strategies for reliable annotation selection.
Large language models (LLMs) exhibited powerful capability in various natural language processing tasks. This work focuses on exploring LLM performance on zero-shot information extraction, with a focus on the ChatGPT and named entity recognition (NER) task. Inspired by the remarkable reasoning capability of LLM on symbolic and arithmetic reasoning, we adapt the prevalent reasoning methods to NER and propose reasoning strategies tailored for NER. First, we explore a decomposed question-answering paradigm by breaking down the NER task into simpler subproblems by labels. Second, we propose syntactic augmentation to stimulate the model’s intermediate thinking in two ways: syntactic prompting, which encourages the model to analyze the syntactic structure itself, and tool augmentation, which provides the model with the syntactic information generated by a parsing tool. Besides, we adapt self-consistency to NER by proposing a two-stage majority voting strategy, which first votes for the most consistent mentions, then the most consistent types. The proposed methods achieve remarkable improvements for zero-shot NER across seven benchmarks, including Chinese and English datasets, and on both domain-specific and general-domain scenarios. In addition, we present a comprehensive analysis of the error types with suggestions for optimization directions. We also verify the effectiveness of the proposed methods on the few-shot setting and other LLMs.
Text embedding models have significantly contributed to advancements in natural language processing by adeptly capturing semantic properties of textual data. However, the ability of these models to generalize across a wide range of syntactic contexts remains under-explored. In this paper, we first develop an evaluation set, named SR, to scrutinize the capability for syntax understanding of text embedding models from two crucial syntactic aspects: Structural heuristics, and Relational understanding among concepts, as revealed by the performance gaps in previous studies. Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges, and such ineffectiveness becomes even more apparent when evaluated against existing benchmark datasets. Furthermore, we conduct rigorous analysis to unearth factors that lead to such limitations and examine why previous evaluations fail to detect such ineffectiveness. Lastly, we propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios. This study serves to highlight the hurdles associated with syntactic generalization and provides pragmatic guidance for boosting model performance across varied syntactic contexts.
Most sentence embedding techniques heavily rely on expensive human-annotated sentence pairs as the supervised signals. Despite the use of large-scale unlabeled data, the performance of unsupervised methods typically lags far behind that of the supervised counterparts in most downstream tasks. In this work, we propose a semi-supervised sentence embedding framework, GenSE, that effectively leverages large-scale unlabeled data. Our method include three parts: 1) Generate: A generator/discriminator model is jointly trained to synthesize sentence pairs from open-domain unlabeled corpus; 2) Discriminate: Noisy sentence pairs are filtered out by the discriminator to acquire high-quality positive and negative sentence pairs; 3) Contrast: A prompt-based contrastive approach is presented for sentence representation learning with both annotated and synthesized data. Comprehensive experiments show that GenSE achieves an average correlation score of 85.19 on the STS datasets and consistent performance improvement on four domain adaptation tasks, significantly surpassing the state-of-the-art methods and convincingly corroborating its effectiveness and generalization ability.
As high-quality labeled data is scarce, unsupervised sentence representation learning has attracted much attention. In this paper, we propose a new framework with a two-branch Siamese Network which maximizes the similarity between two augmented views of each sentence. Specifically, given one augmented view of the input sentence, the online network branch is trained by predicting the representation yielded by the target network of the same sentence under another augmented view. Meanwhile, the target network branch is bootstrapped with a moving average of the online network. The proposed method significantly outperforms other state-of-the-art unsupervised methods on semantic textual similarity (STS) and classification tasks. It can be adopted as a post-training procedure to boost the performance of the supervised methods. We further extend our method for learning multilingual sentence representations and demonstrate its effectiveness on cross-lingual STS tasks. Our code is available at https://github.com/yanzhangnlp/BSL.
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.
AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.