ChengXiang Zhai

Also published as: Chengxiang Zhai


2024

pdf bib
UOUO: Uncontextualized Uncommon Objects for Measuring Knowledge Horizons of Vision Language Models
Xinyu Pi | Mingyuan Wu | Jize Jiang | Haozhen Zheng | Beitong Tian | ChengXiang Zhai | Klara Nahrstedt | Zhiting Hu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Smaller-scale Vision-Language Models (VLMs) often claim to perform on par with larger models in general-domain visual grounding and question-answering benchmarks while offering advantages in computational efficiency and storage. However, their ability to handle rare objects, which fall into the long tail of data distributions, is less understood. To rigorously evaluate this aspect, we introduce the “Uncontextualized Uncommon Objects” (UOUO) benchmark. This benchmark focuses on systematically testing VLMs with both large and small parameter counts on rare and specialized objects. Our comprehensive analysis reveals that while smaller VLMs maintain competitive performance on common datasets, they significantly underperform on tasks involving uncommon objects. We also propose an advanced, scalable pipeline for data collection and cleaning, ensuring the UOUO benchmark provides high-quality, challenging instances. These findings highlight the need to consider long-tail distributions when assessing the true capabilities of VLMs. Code and project details for UOUO can be found at https://zoezheng126.github.io/UOUO-Website/.

pdf bib
Long-Form Analogy Evaluation Challenge
Bhavya Bhavya | Chris Palaguachi | Yang Zhou | Suma Bhat | ChengXiang Zhai
Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges

Given the practical applications of analogies, recent work has studied analogy generation to explain concepts. However, not all generated analogies are of high quality and it is unclear how to measure the quality of this new kind of generated text. To address this challenge, we propose a shared task on automatically evaluating the quality of generated analogies based on seven comprehensive criteria. For this, we will set up a leader board based on our dataset annotated with manual ratings along the seven criteria, and provide a baseline solution leveraging GPT-4. We hope that this task would advance the progress in development of new evaluation metrics and methods for analogy generation in natural language, particularly for education.

pdf bib
AnaDE1.0: A Novel Data Set for Benchmarking Analogy Detection and Extraction
Bhavya Bhavya | Shradha Sehgal | Jinjun Xiong | ChengXiang Zhai
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Textual analogies that make comparisons between two concepts are often used for explaining complex ideas, creative writing, and scientific discovery. In this paper, we propose and study a new task, called Analogy Detection and Extraction (AnaDE), which includes three synergistic sub-tasks: 1) detecting documents containing analogies, 2) extracting text segments that make up the analogy, and 3) identifying the (source and target) concepts being compared. To facilitate the study of this new task, we create a benchmark dataset by scraping Metamia.com and investigate the performances of state-of-the-art models on all sub-tasks to establish the first-generation benchmark results for this new task. We find that the Longformer model achieves the best performance on all the three sub-tasks demonstrating its effectiveness for handling long texts. Moreover, smaller models fine-tuned on our dataset perform better than non-finetuned ChatGPT, suggesting high task difficulty. Overall, the models achieve a high performance on documents detection suggesting that it could be used to develop applications like analogy search engines. Further, there is a large room for improvement on the segment and concept extraction tasks.

2023

pdf bib
When to Use What: An In-Depth Comparative Empirical Analysis of OpenIE Systems for Downstream Applications
Kevin Pei | Ishan Jindal | Kevin Chen-Chuan Chang | ChengXiang Zhai | Yunyao Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Open Information Extraction (OpenIE) has been used in the pipelines of various NLP tasks. Unfortunately, there is no clear consensus on which models to use in which tasks. Muddying things further is the lack of comparisons that take differing training sets into account. In this paper, we present an application-focused empirical survey of neural OpenIE models, training sets, and benchmarks in an effort to help users choose the most suitable OpenIE systems for their applications. We find that the different assumptions made by different models and datasets have a statistically significant effect on performance, making it important to choose the most appropriate model for one’s applications. We demonstrate the applicability of our recommendations on a downstream Complex QA application.

pdf bib
Measuring the Effect of Influential Messages on Varying Personas
Chenkai Sun | Jinning Li | Hou Pong Chan | ChengXiang Zhai | Heng Ji
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Predicting how a user responds to news events enables important applications such as allowing intelligent agents or content producers to estimate the effect on different communities and revise unreleased messages to prevent unexpected bad outcomes such as social conflict and moral injury. We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona (characterizing an individual or a group) might have upon seeing a news message. Compared to the previous efforts which only predict generic comments to news, the proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response. This enables more accurate and comprehensive inference on the mental state of the persona. Meanwhile, the generated sentiment dimensions make the evaluation and application more reliable. We create the first benchmark dataset, which consists of 13,357 responses to 3,847 news headlines from Twitter. We further evaluate the SOTA neural language models with our dataset. The empirical results suggest that the included persona attributes are helpful for the performance of all response dimensions. Our analysis shows that the best-performing models are capable of predicting responses that are consistent with the personas, and as a byproduct, the task formulation also enables many interesting applications in the analysis of social network groups and their opinions, such as the discovery of extreme opinion groups.

pdf bib
Social Commonsense-Guided Search Query Generation for Open-Domain Knowledge-Powered Conversations
Revanth Reddy | Hao Bai | Wentao Yao | Sharath Chandra Etagi Suresh | Heng Ji | ChengXiang Zhai
Findings of the Association for Computational Linguistics: EMNLP 2023

Open-domain dialog involves generating search queries that help obtain relevant knowledge for holding informative conversations. However, it can be challenging to determine what information to retrieve when the user is passive and does not express a clear need or request. To tackle this issue, we present a novel approach that focuses on generating internet search queries that are guided by social commonsense. Specifically, we leverage a commonsense dialog system to establish connections related to the conversation topic, which subsequently guides our query generation. Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation. Through extensive evaluations, we show that our approach overcomes limitations of existing query generation techniques that rely solely on explicit dialog information, and produces search queries that are more relevant, specific, and compelling, ultimately resulting in more engaging responses.

pdf bib
Decoding the Silent Majority: Inducing Belief Augmented Social Graph with Large Language Model for Response Forecasting
Chenkai Sun | Jinning Li | Yi Fung | Hou Chan | Tarek Abdelzaher | ChengXiang Zhai | Heng Ji
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automatic response forecasting for news media plays a crucial role in enabling content producers to efficiently predict the impact of news releases and prevent unexpected negative outcomes such as social conflict and moral injury. To effectively forecast responses, it is essential to develop measures that leverage the social dynamics and contextual information surrounding individuals, especially in cases where explicit profiles or historical actions of the users are limited (referred to as lurkers). As shown in a previous study, 97% of all tweets are produced by only the most active 25% of users. However, existing approaches have limited exploration of how to best process and utilize these important features. To address this gap, we propose a novel framework, named SocialSense, that leverages a large language model to induce a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics. We hypothesize that the induced graph that bridges the gap between distant users who share similar beliefs allows the model to effectively capture the response patterns. Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings, demonstrating its effectiveness in response forecasting. Moreover, the analysis reveals the framework’s capability to effectively handle unseen user and lurker scenarios, further highlighting its robustness and practical applicability.

pdf bib
Incorporating Task-Specific Concept Knowledge into Script Learning
Chenkai Sun | Tie Xu | ChengXiang Zhai | Heng Ji
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

In this paper, we present Tetris, a new task of Goal-Oriented Script Completion. Unlike previous work, it considers a more realistic and general setting, where the input includes not only the goal but also additional user context, including preferences and history. To address this problem, we propose a novel approach, which uses two techniques to improve performance: (1) concept prompting, and (2) script-oriented contrastive learning that addresses step repetition and hallucination problems. On our WikiHow-based dataset, we find that both methods improve performance.

pdf bib
C-PMI: Conditional Pointwise Mutual Information for Turn-level Dialogue Evaluation
Liliang Ren | Mankeerat Sidhu | Qi Zeng | Revanth Gangi Reddy | Heng Ji | ChengXiang Zhai
Proceedings of the Third DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Existing reference-free turn-level evaluation metrics for chatbots inadequately capture the interaction between the user and the system. Consequently, they often correlate poorly with human evaluations. To address this issue, we propose a novel model-agnostic approach that leverages Conditional Pointwise Mutual Information (C-PMI) to measure the turn-level interaction between the system and the user based on a given evaluation dimension. Experimental results on the widely used FED dialogue evaluation dataset demonstrate that our approach significantly improves the correlation with human judgment compared with existing evaluation systems. By replacing the negative log-likelihood-based scorer with our proposed C-PMI scorer, we achieve a relative 60.5% higher Spearman correlation on average for the FED evaluation metric. Our code is publicly available at https://github.com/renll/C-PMI.

pdf bib
Quick Dense Retrievers Consume KALE: Post Training KullbackLeibler Alignment of Embeddings for Asymmetrical dual encoders
Daniel Campos | Alessandro Magnani | Chengxiang Zhai
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

pdf bib
To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference Efficiency
Daniel Campos | Chengxiang Zhai
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

2022

pdf bib
Generation of Student Questions for Inquiry-based Learning
Kevin Ros | Maxwell Jong | Chak Ho Chan | ChengXiang Zhai
Proceedings of the 15th International Conference on Natural Language Generation

pdf bib
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
Bhavya Bhavya | Jinjun Xiong | ChengXiang Zhai
Proceedings of the 15th International Conference on Natural Language Generation

pdf bib
Language Model Pre-Training with Sparse Latent Typing
Liliang Ren | Zixuan Zhang | Han Wang | Clare Voss | ChengXiang Zhai | Heng Ji
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Modern large-scale Pre-trained Language Models (PLMs) have achieved tremendous success on a wide range of downstream tasks. However, most of the LM pre-training objectives only focus on text reconstruction, but have not sought to learn latent-level interpretable representations of sentences. In this paper, we manage to push the language models to obtain a deeper understanding of sentences by proposing a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types. Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge. Besides, the language model pre-trained with such an objective also significantly improves Information Extraction related downstream tasks in both supervised and few-shot settings. Our code is publicly available at https://github.com/renll/SparseLT.

pdf bib
Domain Representative Keywords Selection: A Probabilistic Approach
Pritom Saha Akash | Jie Huang | Kevin Chang | Yunyao Li | Lucian Popa | ChengXiang Zhai
Findings of the Association for Computational Linguistics: ACL 2022

We propose a probabilistic approach to select a subset of a target domain representative keywords from a candidate set, contrasting with a context domain. Such a task is crucial for many downstream tasks in natural language processing. To contrast the target domain and the context domain, we adapt the two-component mixture model concept to generate a distribution of candidate keywords. It provides more importance to the distinctive keywords of the target domain than common keywords contrasting with the context domain. To support the representativeness of the selected keywords towards the target domain, we introduce an optimization algorithm for selecting the subset from the generated candidate distribution. We have shown that the optimization algorithm can be efficiently implemented with a near-optimal approximation guarantee. Finally, extensive experiments on multiple domains demonstrate the superiority of our approach over other baselines for the tasks of keyword summary generation and trending keywords selection.

pdf bib
Improving Candidate Retrieval with Entity Profile Generation for Wikidata Entity Linking
Tuan Lai | Heng Ji | ChengXiang Zhai
Findings of the Association for Computational Linguistics: ACL 2022

Entity linking (EL) is the task of linking entity mentions in a document to referent entities in a knowledge base (KB). Many previous studies focus on Wikipedia-derived KBs. There is little work on EL over Wikidata, even though it is the most extensive crowdsourced KB. The scale of Wikidata can open up many new real-world applications, but its massive number of entities also makes EL challenging. To effectively narrow down the search space, we propose a novel candidate retrieval paradigm based on entity profiling. Wikidata entities and their textual fields are first indexed into a text search engine (e.g., Elasticsearch). During inference, given a mention and its context, we use a sequence-to-sequence (seq2seq) model to generate the profile of the target entity, which consists of its title and description. We use the profile to query the indexed search engine to retrieve candidate entities. Our approach complements the traditional approach of using a Wikipedia anchor-text dictionary, enabling us to further design a highly effective hybrid method for candidate retrieval. Combined with a simple cross-attention reranker, our complete EL framework achieves state-of-the-art results on three Wikidata-based datasets and strong performance on TACKBP-2010.

pdf bib
CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval
Kung-Hsiang Huang | ChengXiang Zhai | Heng Ji
Proceedings of the 29th International Conference on Computational Linguistics

Fact-checking has gained increasing attention due to the widespread of falsified information. Most fact-checking approaches focus on claims made in English only due to the data scarcity issue in other languages. The lack of fact-checking datasets in low-resource languages calls for an effective cross-lingual transfer technique for fact-checking. Additionally, trustworthy information in different languages can be complementary and helpful in verifying facts. To this end, we present the first fact-checking framework augmented with cross-lingual retrieval that aggregates evidence retrieved from multiple languages through a cross-lingual retriever. Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage. The goal for X-ICT is to learn cross-lingual retrieval in which the model learns to identify the passage corresponding to a given translated title. On the X-Fact dataset, our approach achieves 2.23% absolute F1 improvement in the zero-shot cross-lingual setup over prior systems. The source code and data are publicly available at https://github.com/khuangaf/CONCRETE.

2021

pdf bib
Joint Biomedical Entity and Relation Extraction with Knowledge-Enhanced Collective Inference
Tuan Lai | Heng Ji | ChengXiang Zhai | Quan Hung Tran
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Compared to the general news domain, information extraction (IE) from biomedical text requires much broader domain knowledge. However, many previous IE methods do not utilize any external knowledge during inference. Due to the exponential growth of biomedical publications, models that do not go beyond their fixed set of parameters will likely fall behind. Inspired by how humans look up relevant information to comprehend a scientific text, we present a novel framework that utilizes external knowledge for joint entity and relation extraction named KECI (Knowledge-Enhanced Collective Inference). Given an input text, KECI first constructs an initial span graph representing its initial understanding of the text. It then uses an entity linker to form a knowledge graph containing relevant background knowledge for the the entity mentions in the text. To make the final predictions, KECI fuses the initial span graph and the knowledge graph into a more refined graph using an attention mechanism. KECI takes a collective approach to link mention spans to entities by integrating global relational information into local representations using graph convolutional networks. Our experimental results show that the framework is highly effective, achieving new state-of-the-art results in two different benchmark datasets: BioRelEx (binding interaction detection) and ADE (adverse drug event extraction). For example, KECI achieves absolute improvements of 4.59% and 4.91% in F1 scores over the state-of-the-art on the BioRelEx entity and relation extraction tasks

pdf bib
BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks
Tuan Lai | Heng Ji | ChengXiang Zhai
Findings of the Association for Computational Linguistics: EMNLP 2021

Biomedical entity linking is the task of linking entity mentions in a biomedical document to referent entities in a knowledge base. Recently, many BERT-based models have been introduced for the task. While these models achieve competitive results on many datasets, they are computationally expensive and contain about 110M parameters. Little is known about the factors contributing to their impressive performance and whether the over-parameterization is needed. In this work, we shed some light on the inner workings of these large BERT-based models. Through a set of probing experiments, we have found that the entity linking performance only changes slightly when the input word order is shuffled or when the attention scope is limited to a fixed window size. From these observations, we propose an efficient convolutional neural network with residual connections for biomedical entity linking. Because of the sparse connectivity and weight sharing properties, our model has a small number of parameters and is highly efficient. On five public datasets, our model achieves comparable or even better linking accuracy than the state-of-the-art BERT-based models while having about 60 times fewer parameters.

pdf bib
Text2Mol: Cross-Modal Molecule Retrieval with Natural Language Queries
Carl Edwards | ChengXiang Zhai | Heng Ji
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose a new task, Text2Mol, to retrieve molecules using natural language descriptions as queries. Natural language and molecules encode information in very different ways, which leads to the exciting but challenging problem of integrating these two very different modalities. Although some work has been done on text-based retrieval and structure-based retrieval, this new task requires integrating molecules and natural language more directly. Moreover, this can be viewed as an especially challenging cross-lingual retrieval problem by considering the molecules as a language with a very unique grammar. We construct a paired dataset of molecules and their corresponding text descriptions, which we use to learn an aligned common semantic embedding space for retrieval. We extend this to create a cross-modal attention-based model for explainability and reranking by interpreting the attentions as association rules. We also employ an ensemble approach to integrate our different architectures, which significantly improves results from 0.372 to 0.499 MRR. This new multimodal approach opens a new perspective on solving problems in chemistry literature understanding and molecular machine learning.

2020

pdf bib
Multi-task Learning for Multilingual Neural Machine Translation
Yiren Wang | ChengXiang Zhai | Hany Hassan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.

2019

pdf bib
TILM: Neural Language Models with Evolving Topical Influence
Shubhra Kanti Karmaker Santu | Kalyan Veeramachaneni | Chengxiang Zhai
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Content of text data are often influenced by contextual factors which often evolve over time (e.g., content of social media are often influenced by topics covered in the major news streams). Existing language models do not consider the influence of such related evolving topics, and thus are not optimal. In this paper, we propose to incorporate such topical-influence into a language model to both improve its accuracy and enable cross-stream analysis of topical influences. Specifically, we propose a novel language model called Topical Influence Language Model (TILM), which is a novel extension of a neural language model to capture the influences on the contents in one text stream by the evolving topics in another related (or possibly same) text stream. Experimental results on six different text stream data comprised of conference paper titles show that the incorporation of evolving topical influence into a language model is beneficial and TILM outperforms multiple baselines in a challenging task of text forecasting. In addition to serving as a language model, TILM further enables interesting analysis of topical influence among multiple text streams.

2017

pdf bib
Identifying Humor in Reviews using Background Text Sources
Alex Morales | Chengxiang Zhai
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We study the problem of automatically identifying humorous text from a new kind of text data, i.e., online reviews. We propose a generative language model, based on the theory of incongruity, to model humorous text, which allows us to leverage background text sources, such as Wikipedia entry descriptions, and enables construction of multiple features for identifying humorous reviews. Evaluation of these features using supervised learning for classifying reviews into humorous and non-humorous reviews shows that the features constructed based on the proposed generative model are much more effective than the major features proposed in the existing literature, allowing us to achieve almost 86% accuracy. These humorous review predictions can also supply good indicators for identifying helpful reviews.

2016

pdf bib
MeTA: A Unified Toolkit for Text Retrieval and Analysis
Sean Massung | Chase Geigle | ChengXiang Zhai
Proceedings of ACL-2016 System Demonstrations

2012

pdf bib
A Discriminative Model for Query Spelling Correction with Latent Structural SVM
Huizhong Duan | Yanen Li | ChengXiang Zhai | Dan Roth
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
Structural Topic Model for Latent Topical Structure Analysis
Hongning Wang | Duo Zhang | ChengXiang Zhai
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2010

pdf bib
Cross-Lingual Latent Topic Extraction
Duo Zhang | Qiaozhu Mei | ChengXiang Zhai
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Summarizing Contrastive Viewpoints in Opinionated Text
Michael Paul | ChengXiang Zhai | Roxana Girju
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

pdf bib
Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions
Kavita Ganesan | ChengXiang Zhai | Jiawei Han
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

pdf bib
Exploiting Structured Ontology to Organize Scattered Online Opinions
Yue Lu | Huizhong Duan | Hongning Wang | ChengXiang Zhai
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

pdf bib
Shallow Information Extraction from Medical Forum Data
Parikshit Sondhi | Manish Gupta | ChengXiang Zhai | Julia Hockenmaier
Coling 2010: Posters

2008

pdf bib
Generating Impact-Based Summaries for Scientific Literature
Qiaozhu Mei | ChengXiang Zhai
Proceedings of ACL-08: HLT

2007

pdf bib
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference
Candace Sidner | Tanja Schultz | Matthew Stone | ChengXiang Zhai
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference

pdf bib
A Systematic Exploration of the Feature Space for Relation Extraction
Jing Jiang | ChengXiang Zhai
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference

pdf bib
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers
Candace Sidner | Tanja Schultz | Matthew Stone | ChengXiang Zhai
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers

pdf bib
Statistical Language Models for Information Retrieval
ChengXiang Zhai
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Tutorial Abstracts

pdf bib
Instance Weighting for Domain Adaptation in NLP
Jing Jiang | ChengXiang Zhai
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

2006

pdf bib
Named Entity Transliteration with Comparable Corpora
Richard Sproat | Tao Tao | ChengXiang Zhai
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

pdf bib
Exploiting Domain Structure for Named Entity Recognition
Jing Jiang | ChengXiang Zhai
Proceedings of the Human Language Technology Conference of the NAACL, Main Conference

pdf bib
Language Model Information Retrieval with Document Expansion
Tao Tao | Xuanhui Wang | Qiaozhu Mei | ChengXiang Zhai
Proceedings of the Human Language Technology Conference of the NAACL, Main Conference

pdf bib
Unsupervised Named Entity Transliteration Using Temporal and Phonetic Correlation
Tao Tao | Su-Youn Yoon | Andrew Fister | Richard Sproat | ChengXiang Zhai
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing

1997

pdf bib
Fast Statistical Parsing of Noun Phrases for Document Indexing
Chengxiang Zhai
Fifth Conference on Applied Natural Language Processing

1996

pdf bib
Noun Phrase Analysis in Large Unrestricted Text for Information Retrieval
David A. Evans | Chengxiang Zhai
34th Annual Meeting of the Association for Computational Linguistics