2024
pdf
bib
abs
Take Off the Training Wheels! Progressive In-Context Learning for Effective Alignment
Zhenyu Liu
|
Dongfang Li
|
Xinshuo Hu
|
Xinping Zhao
|
Yibin Chen
|
Baotian Hu
|
Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent studies have explored the working mechanisms of In-Context Learning (ICL). However, they mainly focus on classification and simple generation tasks, limiting their broader application to more complex generation tasks in practice. To address this gap, we investigate the impact of demonstrations on token representations within the practical alignment tasks. We find that the transformer embeds the task function learned from demonstrations into the separator token representation, which plays an important role in the generation of prior response tokens. Once the prior response tokens are determined, the demonstrations become redundant. Motivated by this finding, we propose an efficient Progressive In-Context Alignment (PICA) method consisting of two stages. In the first few-shot stage, the model generates several prior response tokens via standard ICL while concurrently extracting the ICL vector that stores the task function from the separator token representation. In the following zero-shot stage, this ICL vector guides the model to generate responses without further demonstrations. Extensive experiments demonstrate that our PICA not only surpasses vanilla ICL but also achieves comparable performance to other alignment tuning methods. The proposed training-free method reduces the time cost (e.g., 5.45×) with improved alignment performance (e.g., 6.57+). Consequently, our work highlights the application of ICL for alignment and calls for a deeper understanding of ICL for complex generations. The code will be available at https://github.com/HITsz-TMG/PICA.
pdf
bib
abs
SEER: Self-Aligned Evidence Extraction for Retrieval-Augmented Generation
Xinping Zhao
|
Dongfang Li
|
Yan Zhong
|
Boren Hu
|
Yibin Chen
|
Baotian Hu
|
Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent studies in Retrieval-Augmented Generation (RAG) have investigated extracting evidence from retrieved passages to reduce computational costs and enhance the final RAG performance, yet it remains challenging. Existing methods heavily rely on heuristic-based augmentation, encountering several issues: (1) Poor generalization due to hand-crafted context filtering; (2) Semantics deficiency due to rule-based context chunking; (3) Skewed length due to sentence-wise filter learning. To address these issues, we propose a model-based evidence extraction learning framework, SEER, optimizing a vanilla model as an evidence extractor with desired properties through self-aligned learning. Extensive experiments show that our method largely improves the final RAG performance, enhances the faithfulness, helpfulness, and conciseness of the extracted evidence, and reduces the evidence length by 9.25 times. The code will be available at https://github.com/HITsz-TMG/SEER.
pdf
bib
abs
Medico: Towards Hallucination Detection and Correction with Multi-source Evidence Fusion
Xinping Zhao
|
Jindi Yu
|
Zhenyu Liu
|
Jifang Wang
|
Dongfang Li
|
Yibin Chen
|
Baotian Hu
|
Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
As we all know, hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect, which inflicts a heavy blow on the widespread application of LLMs. Previous studies have shown that LLMs could confidently state non-existent facts rather than answering “I don’t know”. Therefore, it is necessary to resort to external knowledge to detect and correct the hallucinated content. Since manual detection and correction of factual errors is labor-intensive, developing an automatic end-to-end hallucination-checking approach is indeed a needful thing. To this end, we present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework. It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content. Experimental results on evidence retrieval (0.964 HR@5, 0.908 MRR@5), hallucination detection (0.927-0.951 F1), and hallucination correction (0.973-0.979 approval rate) manifest the great potential of Medico. A video demo of Medico can be found at https://youtu.be/RtsO6CSesBI.
pdf
bib
abs
TruthReader: Towards Trustworthy Document Assistant Chatbot with Reliable Attribution
Dongfang Li
|
Xinshuo Hu
|
Zetian Sun
|
Baotian Hu
|
Shaolin Ye
|
Zifei Shan
|
Qian Chen
|
Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Document assistant chatbots are empowered with extensive capabilities by Large Language Models (LLMs) and have exhibited significant advancements. However, these systems may suffer from hallucinations that are difficult to verify in the context of given documents.Moreover, despite the emergence of products for document assistants, they either heavily rely on commercial LLM APIs or lack transparency in their technical implementations, leading to expensive usage costs and data privacy concerns. In this work, we introduce a fully open-source document assistant chatbot with reliable attribution, named TruthReader, utilizing adapted conversational retriever and LLMs. Our system enables the LLMs to generate answers with detailed inline citations, which can be attributed to the original document paragraphs, facilitating the verification of the factual consistency of the generated text. To further adapt the generative model, we develop a comprehensive pipeline consisting of data construction and model optimization processes.This pipeline equips the LLMs with the necessary capabilities to generate accurate answers, produce reliable citations, and refuse unanswerable questions. Our codebase, data and models are released, and the video demonstration of our system is available at https://youtu.be/RYVt3itzUQM.
pdf
bib
abs
Improving Attributed Text Generation of Large Language Models via Preference Learning
Dongfang Li
|
Zetian Sun
|
Baotian Hu
|
Zhenyu Liu
|
Xinshuo Hu
|
Xuebo Liu
|
Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024
Large language models have been widely adopted in natural language processing, yet they face the challenge of generating unreliable content. Recent works aim to reduce misinformation and hallucinations by resorting to attribution as a means to provide evidence (i.e., citations). However, current attribution methods usually focus on the retrieval stage and automatic evaluation that neglect mirroring the citation mechanisms in human scholarly writing to bolster credibility. In this paper, we address these challenges by modelling the attribution task as preference learning and introducing an Automatic Preference Optimization (APO) framework. First, we create a curated collection for post-training with 6,330 examples by collecting and filtering from existing datasets. Second, considering the high cost of labelling preference data, we further propose an automatic method to synthesize attribution preference data resulting in 95,263 pairs. Moreover, inspired by the human citation process, we further propose a progressive preference optimization method by leveraging fine-grained information. Extensive experiments on three datasets (i.e., ASQA, StrategyQA, and ELI5) demonstrate that APO achieves state-of-the-art citation F1 with higher answer quality.
pdf
bib
abs
Temporal Knowledge Question Answering via Abstract Reasoning Induction
Ziyang Chen
|
Dongfang Li
|
Xiang Zhao
|
Baotian Hu
|
Min Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this study, we address the challenge of enhancing temporal knowledge reasoning in Large Language Models (LLMs). LLMs often struggle with this task, leading to the generation of inaccurate or misleading responses. This issue mainly arises from their limited ability to handle evolving factual knowledge and complex temporal logic. To overcome these limitations, we propose Abstract Reasoning Induction (ARI) framework, which divides temporal reasoning into two distinct phases: Knowledge agnostic and Knowledge-based. This framework offers factual knowledge support to LLMs while minimizing the incorporation of extraneous noisy data. Concurrently, informed by the principles of constructivism, ARI provides LLMs the capability to engage in proactive, self-directed learning from both correct and incorrect historical reasoning samples. By teaching LLMs to actively construct knowledge and methods, it can significantly boosting their temporal reasoning abilities. Our approach achieves significant improvements, with relative gains of 29.7% and 9.27% on two temporal QA datasets, underscoring its efficacy in advancing temporal reasoning in LLMs. The code can be found at https: //github.com/czy1999/ARI-QA.
pdf
bib
abs
Does the Generator Mind Its Contexts? An Analysis of Generative Model Faithfulness under Context Transfer
Xinshuo Hu
|
Dongfang Li
|
Xiaoguang Li
|
Yuxiang Wu
|
Lifeng Shang
|
Baotian Hu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
he present study introduces the knowledge-augmented generator, which is specifically designed to produce information that remains grounded in contextual knowledge, regardless of alterations in the context. Previous research has predominantly focused on examining hallucinations stemming from static input, such as in the domains of summarization or machine translation. However, our investigation delves into the faithfulness of generative question answering in the presence of dynamic knowledge. Our objective is to explore the existence of hallucinations arising from parametric memory when contextual knowledge undergoes changes, while also analyzing the underlying causes for their occurrence. In order to efficiently address this issue, we propose a straightforward yet effective measure for detecting such hallucinations. Intriguingly, our investigation uncovers that all models exhibit a tendency to generate previous answers as hallucinations. To gain deeper insights into the underlying causes of this phenomenon, we conduct a series of experiments that verify the critical role played by context in hallucination, both during training and testing, from various perspectives.
2023
pdf
bib
abs
ExplainCPE: A Free-text Explanation Benchmark of Chinese Pharmacist Examination
Dongfang Li
|
Jindi Yu
|
Baotian Hu
|
Zhenran Xu
|
Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
In the field of Large Language Models (LLMs), researchers are increasingly exploring their effectiveness across a wide range of tasks. However, a critical area that requires further investigation is the interpretability of these models, particularly the ability to generate rational explanations for their decisions. Most existing explanation datasets are limited to the English language and the general domain, which leads to a scarcity of linguistic diversity and a lack of resources in specialized domains, such as medical. To mitigate this, we propose ExplainCPE, a challenging medical dataset consisting of over 7K problems from Chinese Pharmacist Examination, specifically tailored to assess the model-generated explanations. From the overall results, only GPT-4 passes the pharmacist examination with a 75.7% accuracy, while other models like ChatGPT fail. Further detailed analysis of LLM-generated explanations reveals the limitations of LLMs in understanding medical text and executing computational reasoning. With the increasing importance of AI safety and trustworthiness, ExplainCPE takes a step towards improving and evaluating the interpretability of LLMs in the medical domain.
pdf
bib
Enhancing Open-Domain Table Question Answering via Syntax- and Structure-aware Dense Retrieval
Nengzheng Jin
|
Dongfang Li
|
Junying Chen
|
Joanna Siebert
|
Qingcai Chen
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
pdf
bib
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop
Dongfang Li
|
Rahmad Mahendra
|
Zilu Peter Tang
|
Hyeju Jang
|
Yugo Murawaki
|
Derek Fai Wong
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop
pdf
bib
abs
Towards Faithful Explanations for Text Classification with Robustness Improvement and Explanation Guided Training
Dongfang Li
|
Baotian Hu
|
Qingcai Chen
|
Shan He
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023)
Feature attribution methods highlight the important input tokens as explanations to model predictions, which have been widely applied to deep neural networks towards trustworthy AI. However, recent works show that explanations provided by these methods face challenges of being faithful and robust. In this paper, we propose a method with Robustness improvement and Explanation Guided training towards more faithful EXplanations (REGEX) for text classification. First, we improve model robustness by input gradient regularization technique and virtual adversarial training. Secondly, we use salient ranking to mask noisy tokens and maximize the similarity between model attention and feature attribution, which can be seen as a self-training procedure without importing other external information. We conduct extensive experiments on six datasets with five attribution methods, and also evaluate the faithfulness in the out-of-domain setting. The results show that REGEX improves fidelity metrics of explanations in all settings and further achieves consistent gains based on two randomization tests. Moreover, we show that using highlight explanations produced by REGEX to train select-then-predict models results in comparable task performance to the end-to-end method.
2022
pdf
bib
abs
Calibration Meets Explanation: A Simple and Effective Approach for Model Confidence Estimates
Dongfang Li
|
Baotian Hu
|
Qingcai Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Calibration strengthens the trustworthiness of black-box models by producing better accurate confidence estimates on given examples. However, little is known about if model explanations can help confidence calibration. Intuitively, humans look at important features attributions and decide whether the model is trustworthy. Similarly, the explanations may tell us when the model might know and when it does not. Inspired by this, we propose a method named CME that leverages model explanations to make the model less confident with non-inductive attributions. The idea is that when the model is not highly confident, it is difficult to identify strong indications of any class, and the tokens accordingly do not have high attribution scores for any class and vice versa. We conduct extensive experiments on six datasets with two popular pre-trained language models in the in-domain and out-of-domain settings. The results show that CME improves calibration performance in all settings. The expected calibration errors are further reduced when combined with temperature scaling. Our findings highlight that model explanations can help calibrate posterior estimates.
pdf
bib
abs
Prompt-based Text Entailment for Low-Resource Named Entity Recognition
Dongfang Li
|
Baotian Hu
|
Qingcai Chen
Proceedings of the 29th International Conference on Computational Linguistics
Pre-trained Language Models (PLMs) have been applied in NLP tasks and achieve promising results. Nevertheless, the fine-tuning procedure needs labeled data of the target domain, making it difficult to learn in low-resource and non-trivial labeled scenarios. To address these challenges, we propose Prompt-based Text Entailment (PTE) for low-resource named entity recognition, which better leverages knowledge in the PLMs. We first reformulate named entity recognition as the text entailment task. The original sentence with entity type-specific prompts is fed into PLMs to get entailment scores for each candidate. The entity type with the top score is then selected as final label. Then, we inject tagging labels into prompts and treat words as basic units instead of n-gram spans to reduce time complexity in generating candidates by n-grams enumeration. Experimental results demonstrate that the proposed method PTE achieves competitive performance on the CoNLL03 dataset, and better than fine-tuned counterparts on the MIT Movie and Few-NERD dataset in low-resource settings.
2020
pdf
bib
abs
Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text
Dongfang Li
|
Baotian Hu
|
Qingcai Chen
|
Weihua Peng
|
Anqi Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Machine reading comprehension (MRC) has achieved significant progress on the open domain in recent years, mainly due to large-scale pre-trained language models. However, it performs much worse in specific domains such as the medical field due to the lack of extensive training data and professional structural knowledge neglect. As an effort, we first collect a large scale medical multi-choice question dataset (more than 21k instances) for the National Licensed Pharmacist Examination in China. It is a challenging medical examination with a passing rate of less than 14.2% in 2018. Then we propose a novel reading comprehension model KMQA, which can fully exploit the structural medical knowledge (i.e., medical knowledge graph) and the reference medical plain text (i.e., text snippets retrieved from reference books). The experimental results indicate that the KMQA outperforms existing competitive models with a large margin and passes the exam with 61.8% accuracy rate on the test set.
2019
pdf
bib
abs
Trigger Word Detection and Thematic Role Identification via BERT and Multitask Learning
Dongfang Li
|
Ying Xiong
|
Baotian Hu
|
Hanyang Du
|
Buzhou Tang
|
Qingcai Chen
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
The prediction of the relationship between the disease with genes and its mutations is a very important knowledge extraction task that can potentially help drug discovery. In this paper, we present our approaches for trigger word detection (task 1) and the identification of its thematic role (task 2) in AGAC track of BioNLP Open Shared Task 2019. Task 1 can be regarded as the traditional name entity recognition (NER), which cultivates molecular phenomena related to gene mutation. Task 2 can be regarded as relation extraction which captures the thematic roles between entities. For two tasks, we exploit the pre-trained biomedical language representation model (i.e., BERT) in the pipe of information extraction for the collection of mutation-disease knowledge from PubMed. And also, we design a fine-tuning technique and extra features by using multi-task learning. The experiment results show that our proposed approaches achieve 0.60 (ranks 1) and 0.25 (ranks 2) on task 1 and task 2 respectively in terms of F1 metric.
2018
pdf
bib
abs
LCQMC:A Large-scale Chinese Question Matching Corpus
Xin Liu
|
Qingcai Chen
|
Chong Deng
|
Huajun Zeng
|
Jing Chen
|
Dongfang Li
|
Buzhou Tang
Proceedings of the 27th International Conference on Computational Linguistics
The lack of large-scale question matching corpora greatly limits the development of matching methods in question answering (QA) system, especially for non-English languages. To ameliorate this situation, in this paper, we introduce a large-scale Chinese question matching corpus (named LCQMC), which is released to the public1. LCQMC is more general than paraphrase corpus as it focuses on intent matching rather than paraphrase. How to collect a large number of question pairs in variant linguistic forms, which may present the same intent, is the key point for such corpus construction. In this paper, we first use a search engine to collect large-scale question pairs related to high-frequency words from various domains, then filter irrelevant pairs by the Wasserstein distance, and finally recruit three annotators to manually check the left pairs. After this process, a question matching corpus that contains 260,068 question pairs is constructed. In order to verify the LCQMC corpus, we split it into three parts, i.e., a training set containing 238,766 question pairs, a development set with 8,802 question pairs, and a test set with 12,500 question pairs, and test several well-known sentence matching methods on it. The experimental results not only demonstrate the good quality of LCQMC but also provide solid baseline performance for further researches on this corpus.