Kaisong Song


2024

pdf bib
Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration
Weikang Yuan | Junjie Cao | Zhuoren Jiang | Yangyang Kang | Jun Lin | Kaisong Song | Tianqianjin Lin | Pengwei Yan | Changlong Sun | Xiaozhong Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) could struggle to fully understand legal theories and perform complex legal reasoning tasks. In this study, we introduce a challenging task (confusing charge prediction) to better evaluate LLMs’ understanding of legal theories and reasoning capabilities. We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability (MALR). MALR employs non-parametric learning, encouraging LLMs to automatically decompose complex legal tasks and mimic human learning process to extract insights from legal rules, helping LLMs better understand legal theories and enhance their legal reasoning abilities. Extensive experiments on multiple real-world datasets demonstrate that the proposed framework effectively addresses complex reasoning issues in practical scenarios, paving the way for more reliable applications in the legal domain.

pdf bib
STICKERCONV: Generating Multimodal Empathetic Responses from Scratch
Yiqun Zhang | Fanheng Kong | Peidong Wang | Shuang Sun | SWangLing SWangLing | Shi Feng | Daling Wang | Yifei Zhang | Kaisong Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research, notably due to the challenge of a lack of comprehensive datasets. In this paper, we introduce the Agent for STICKERCONV (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, STICKERCONV, comprising 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios. This dataset serves as a benchmark for multimodal empathetic generation. To advance further, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation framework, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS’s effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems.

pdf bib
Knowledge Triplets Derivation from Scientific Publications via Dual-Graph Resonance
Kai Zhang | Pengcheng Li | Kaisong Song | Xurui Li | Yangyang Kang | Xuhong Zhang | Xiaozhong Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Scientific Information Extraction (SciIE) is a vital task and is increasingly being adopted in biomedical data mining to conceptualize and epitomize knowledge triplets from the scientific literature. Existing relation extraction methods aim to extract explicit triplet knowledge from documents, however, they can hardly perceive unobserved factual relations. Recent generative methods have more flexibility, but their generated relations will encounter trustworthiness problems. In this paper, we first propose a novel Extraction-Contextualization-Derivation (ECD) strategy to generate a document-specific and entity-expanded dynamic graph from a shared static knowledge graph. Then, we propose a novel Dual-Graph Resonance Network (DGRN) which can generate richer explicit and implicit relations under the guidance of static and dynamic knowledge topologies. Experiments conducted on a public PubMed corpus validate the superiority of our method against several state-of-the-art baselines.

pdf bib
PDAMeta: Meta-Learning Framework with Progressive Data Augmentation for Few-Shot Text Classification
Xurui Li | Kaisong Song | Tianqianjin Lin | Yangyang Kang | Fubang Zhao | Changlong Sun | Xiaozhong Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, we have witnessed the breakthroughs of meta-learning for few-shot learning scenario. Data augmentation is essential for meta-learning, particularly in situations where data is extremely scarce. However, existing text data augmentation methods can not ensure the diversity and quality of the generated data, which leads to sub-optimal performance. Inspired by the recent success of large language models (LLMs) which demonstrate improved language comprehension abilities, we propose a Meta-learning framework with Progressive Data Augmentation (PDAMeta) for few-shot text classification, which contains a two-stage data augmentation strategy. First, the prompt-based data augmentation enriches the diversity of the training instances from a global perspective. Second, the attention-based data augmentation further improves the data quality from a local perspective. Last, we propose a dual-stream contrastive meta-learning strategy to learn discriminative text representations from both original and augmented instances. Extensive experiments conducted on four public few-shot text classification datasets show that PDAMeta significantly outperforms several state-of-the-art models and shows better robustness.

2023

pdf bib
Low-Resource Comparative Opinion Quintuple Extraction by Data Augmentation with Prompting
Qingting Xu | Yu Hong | Fubang Zhao | Kaisong Song | Yangyang Kang | Jiaxiang Chen | Guodong Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

Comparative Opinion Quintuple Extraction (COQE) aims to predict comparative opinion quintuples from comparative sentences. These quintuples include subject, object, shareable aspect, comparative opinion, and preference. The existing pipeline-based COQE method fails in error propagation. In addition, the complexity and insufficient amounts of annotated data hinder the performance of COQE models. In this paper, we introduce a novel approach called low-resource comparative opinion quintuple extraction by Data Augmentation with Prompting (DAP). Firstly, we present an end-to-end model architecture better suited to the data augmentation method from triplets to quintuples and can effectively avoid error propagation. Additionally, we introduce a data-centric augmentation approach that leverages the robust generative abilities of ChatGPT and integrates transfer learning techniques. Experimental results over three datasets (Camera, Car, Ele) demonstrate that our approach yields substantial improvements and achieves state-of-the-art results. The source code and data are publicly released at: https://github.com/qtxu-nlp/COQE-DAP.

pdf bib
Content- and Topology-Aware Representation Learning for Scientific Multi-Literature
Kai Zhang | Kaisong Song | Yangyang Kang | Xiaozhong Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Representation learning forms an essential building block in the development of natural language processing architectures. To date, mainstream approaches focus on learning textual information at the sentence- or document-level, unfortunately, overlooking the inter-document connections. This omission decreases the potency of downstream applications, particularly in multi-document settings. To address this issue, embeddings equipped with latent semantic and rich relatedness information are needed. In this paper, we propose SMRC2, which extends representation learning to the multi-document level. Our model jointly learns latent semantic information from content and rich relatedness information from topological networks. Unlike previous studies, our work takes multi-document as input and integrates both semantic and relatedness information using a shared space via language model and graph structure. Our extensive experiments confirm the superiority and effectiveness of our approach. To encourage further research in scientific multi-literature representation learning, we will release our code and a new dataset from the biomedical domain.

pdf bib
STINMatch: Semi-Supervised Semantic-Topological Iteration Network for Financial Risk Detection via News Label Diffusion
Xurui Li | Yue Qin | Rui Zhu | Tianqianjin Lin | Yongming Fan | Yangyang Kang | Kaisong Song | Fubang Zhao | Changlong Sun | Haixu Tang | Xiaozhong Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Commercial news provide rich semantics and timely information for automated financial risk detection. However, unaffordable large-scale annotation as well as training data sparseness barrier the full exploitation of commercial news in risk detection. To address this problem, we propose a semi-supervised Semantic-Topological Iteration Network, STINMatch, along with a news-enterprise knowledge graph (NEKG) to endorse the risk detection enhancement. The proposed model incorporates a label correlation matrix and interactive consistency regularization techniques into the iterative joint learning framework of text and graph modules. The carefully designed framework takes full advantage of the labeled and unlabeled data as well as their interrelations, enabling deep label diffusion coordination between article-level semantics and label correlations following the topological structure. Extensive experiments demonstrate the superior effectiveness and generalization ability of STINMatch.

2021

pdf bib
A Role-Selected Sharing Network for Joint Machine-Human Chatting Handoff and Service Satisfaction Analysis
Jiawei Liu | Kaisong Song | Yangyang Kang | Guoxiu He | Zhuoren Jiang | Changlong Sun | Wei Lu | Xiaozhong Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Chatbot is increasingly thriving in different domains, however, because of unexpected discourse complexity and training data sparseness, its potential distrust hatches vital apprehension. Recently, Machine-Human Chatting Handoff (MHCH), predicting chatbot failure and enabling human-algorithm collaboration to enhance chatbot quality, has attracted increasing attention from industry and academia. In this study, we propose a novel model, Role-Selected Sharing Network (RSSN), which integrates both dialogue satisfaction estimation and handoff prediction in one multi-task learning framework. Unlike prior efforts in dialog mining, by utilizing local user satisfaction as a bridge, global satisfaction detector and handoff predictor can effectively exchange critical information. Specifically, we decouple the relation and interaction between the two tasks by the role information after the shared encoder. Extensive experiments on two public datasets demonstrate the effectiveness of our model.

2020

pdf bib
Multi-Turn Dialogue Generation in E-Commerce Platform with the Context of Historical Dialogue
WeiSheng Zhang | Kaisong Song | Yangyang Kang | Zhongqing Wang | Changlong Sun | Xiaozhong Liu | Shoushan Li | Min Zhang | Luo Si
Findings of the Association for Computational Linguistics: EMNLP 2020

As an important research topic, customer service dialogue generation tends to generate generic seller responses by leveraging current dialogue information. In this study, we propose a novel and extensible dialogue generation method by leveraging sellers’ historical dialogue information, which can be both accessible and informative. By utilizing innovative historical dialogue representation learning and historical dialogue selection mechanism, the proposed model is capable of detecting most related responses from sellers’ historical dialogues, which can further enhance the current dialogue generation quality. Unlike prior dialogue generation efforts, we treat each seller’s historical dialogues as a list of Customer-Seller utterance pairs and allow the model to measure their different importance, and copy words directly from most relevant pairs. Extensive experimental results show that the proposed approach can generate high-quality responses that cater to specific sellers’ characteristics and exhibit consistent superiority over baselines on a real-world multi-turn customer service dialogue dataset.

2019

pdf bib
Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning
Kaisong Song | Lidong Bing | Wei Gao | Jun Lin | Lujun Zhao | Jiancheng Wang | Changlong Sun | Xiaozhong Liu | Qiong Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model.

2018

pdf bib
A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional Context Awareness
Xiangju Li | Kaisong Song | Shi Feng | Daling Wang | Yifei Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Emotion cause analysis has been a key topic in natural language processing. Existing methods ignore the contexts around the emotion word which can provide an emotion cause clue. Meanwhile, the clauses in a document play different roles on stimulating a certain emotion, depending on their content relevance. Therefore, we propose a co-attention neural network model for emotion cause analysis with emotional context awareness. The method encodes the clauses with a co-attention based bi-directional long short-term memory into high-level input representations, which are further fed into a convolutional layer for emotion cause analysis. Experimental results show that our approach outperforms the state-of-the-art baseline methods.