Kristina Toutanova


2024

pdf bib
Mitigating Catastrophic Forgetting in Language Transfer via Model Merging
Anton Alexandrov | Veselin Raychev | Mark Niklas Mueller | Ce Zhang | Martin Vechev | Kristina Toutanova
Findings of the Association for Computational Linguistics: EMNLP 2024

As open-weight large language models (LLMs) achieve ever more impressive performance across a wide range of tasks in English, practitioners aim to adapt these models to different languages. However, such language adaptation is often accompanied by catastrophic forgetting of the base model’s capabilities, severely limiting the usefulness of the resulting model. We address this issue by proposing Branch-and-Merge (BaM), a new adaptation method based on iteratively merging multiple models, fine-tuned on a subset of the available training data. BaM is based on the insight that this yields lower magnitude but higher quality weight changes, reducing forgetting of the source domain while maintaining learning on the target domain. We demonstrate in an extensive empirical study on Bulgarian and German that BaM can significantly reduce forgetting while matching or even improving target domain performance compared to both standard continued pretraining and instruction finetuning across different model architectures.

pdf bib
Efficient End-to-End Visual Document Understanding with Rationale Distillation
Wang Zhu | Alekh Agarwal | Mandar Joshi | Robin Jia | Jesse Thomason | Kristina Toutanova
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Understanding visually situated language requires interpreting complex layouts of textual and visual elements. Pre-processing tools, such as optical character recognition (OCR), can map document image inputs to textual tokens, then large language models (LLMs) can reason over text.However, such methods have high computational and engineering complexity. Can small pretrained image-to-text models accurately understand visual documents through similar recognition and reasoning steps instead?We propose Rationale Distillation (RD), which incorporates the outputs of OCR tools, LLMs, and larger multimodal models as intermediate “rationales”, and trains a small student model to predict both rationales and answers. On three visual document understanding benchmarks representing infographics, scanned documents, and figures, our Pix2Struct (282M parameters) student model finetuned with RD outperforms the base model by 4-5% absolute accuracy with only 1% higher computational cost.

2023

pdf bib
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations
Chaitanya Malaviya | Peter Shaw | Ming-Wei Chang | Kenton Lee | Kristina Toutanova
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for “shorebirds that are not sandpipers” or “science-fiction films shot in England”. To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.

2022

pdf bib
Improving Compositional Generalization with Latent Structure and Data Augmentation
Linlu Qiu | Peter Shaw | Panupong Pasupat | Pawel Nowak | Tal Linzen | Fei Sha | Kristina Toutanova
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Generic unstructured neural networks have been shown to struggle on out-of-distribution compositional generalization. Compositional data augmentation via example recombination has transferred some prior knowledge about compositionality to such black-box neural models for several semantic parsing tasks, but this often required task-specific engineering or provided limited gains. We present a more powerful data recombination method using a model called Compositional Structure Learner (CSL). CSL is a generative model with a quasi-synchronous context-free grammar backbone, which we induce from the training data. We sample recombined examples from CSL and add them to the fine-tuning data of a pre-trained sequence-to-sequence model (T5). This procedure effectively transfers most of CSL’s compositional bias to T5 for diagnostic tasks, and results in a model even stronger than a T5-CSL ensemble on two real world compositional generalization tasks. This results in new state-of-the-art performance for these challenging semantic parsing tasks requiring generalization to both natural language variation and novel compositions of elements.

pdf bib
Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing
Linlu Qiu | Peter Shaw | Panupong Pasupat | Tianze Shi | Jonathan Herzig | Emily Pitler | Fei Sha | Kristina Toutanova
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Despite their strong performance on many tasks, pre-trained language models have been shown to struggle on out-of-distribution compositional generalization. Meanwhile, recent work has shown considerable improvements on many NLP tasks from model scaling. Can scaling up model size also improve compositional generalization in semantic parsing? We evaluate encoder-decoder models up to 11B parameters and decoder-only models up to 540B parameters, and compare model scaling curves for three different methods for applying a pre-trained language model to a new task: fine-tuning all parameters, prompt tuning, and in-context learning. We observe that fine-tuning generally has flat or negative scaling curves on out-of-distribution compositional generalization in semantic parsing evaluations. In-context learning has positive scaling curves, but is generally outperformed by much smaller fine-tuned models. Prompt-tuning can outperform fine-tuning, suggesting further potential improvements from scaling as it exhibits a more positive scaling curve. Additionally, we identify several error trends that vary with model scale. For example, larger models are generally better at modeling the syntax of the output space, but are also more prone to certain types of overfitting. Overall, our study highlights limitations of current techniques for effectively leveraging model scale for compositional generalization, while our analysis also suggests promising directions for future work.

2021

pdf bib
Compositional Generalization and Natural Language Variation: Can a Semantic Parsing Approach Handle Both?
Peter Shaw | Ming-Wei Chang | Panupong Pasupat | Kristina Toutanova
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Sequence-to-sequence models excel at handling natural language variation, but have been shown to struggle with out-of-distribution compositional generalization. This has motivated new specialized architectures with stronger compositional biases, but most of these approaches have only been evaluated on synthetically-generated datasets, which are not representative of natural language variation. In this work we ask: can we develop a semantic parsing approach that handles both natural language variation and compositional generalization? To better assess this capability, we propose new train and test splits of non-synthetic datasets. We demonstrate that strong existing approaches do not perform well across a broad set of evaluations. We also propose NQG-T5, a hybrid model that combines a high-precision grammar-based approach with a pre-trained sequence-to-sequence model. It outperforms existing approaches across several compositional generalization challenges on non-synthetic data, while also being competitive with the state-of-the-art on standard evaluations. While still far from solving this problem, our study highlights the importance of diverse evaluations and the open challenge of handling both compositional generalization and natural language variation in semantic parsing.

pdf bib
Sparse, Dense, and Attentional Representations for Text Retrieval
Yi Luan | Jacob Eisenstein | Kristina Toutanova | Michael Collins
Transactions of the Association for Computational Linguistics, Volume 9

Dual encoders perform retrieval by encoding documents and queries into dense low-dimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.

pdf bib
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Kristina Toutanova | Anna Rumshisky | Luke Zettlemoyer | Dilek Hakkani-Tur | Iz Beltagy | Steven Bethard | Ryan Cotterell | Tanmoy Chakraborty | Yichao Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Representations for Question Answering from Documents with Tables and Text
Vicky Zayats | Kristina Toutanova | Mari Ostendorf
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Tables in web documents are pervasive and can be directly used to answer many of the queries searched on the web, motivating their integration in question answering. Very often information presented in tables is succinct and hard to interpret with standard language representations. On the other hand, tables often appear within textual context, such as an article describing the table. Using the information from an article as additional context can potentially enrich table representations. In this work we aim to improve question answering from tables by refining table representations based on information from surrounding text. We also present an effective method to combine text and table-based predictions for question answering from full documents, obtaining significant improvements on the Natural Questions dataset (Kwiatkowski et al., 2019).

pdf bib
Joint Passage Ranking for Diverse Multi-Answer Retrieval
Sewon Min | Kenton Lee | Ming-Wei Chang | Kristina Toutanova | Hannaneh Hajishirzi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a given question. This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer. Prior work focusing on single-answer retrieval is limited as it cannot reason about the set of passages jointly. In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms. Compared to prior approaches, JPR achieves significantly better answer coverage on three multi-answer datasets. When combined with downstream question answering, the improved retrieval enables larger answer generation models since they need to consider fewer passages, establishing a new state-of-the-art.

2020

pdf bib
Probabilistic Assumptions Matter: Improved Models for Distantly-Supervised Document-Level Question Answering
Hao Cheng | Ming-Wei Chang | Kenton Lee | Kristina Toutanova
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We address the problem of extractive question answering using document-level distant super-vision, pairing questions and relevant documents with answer strings. We compare previously used probability space and distant supervision assumptions (assumptions on the correspondence between the weak answer string labels and possible answer mention spans). We show that these assumptions interact, and that different configurations provide complementary benefits. We demonstrate that a multi-objective model can efficiently combine the advantages of multiple assumptions and outperform the best individual formulation. Our approach outperforms previous state-of-the-art models by 4.3 points in F1 on TriviaQA-Wiki and 1.7 points in Rouge-L on NarrativeQA summaries.

2019

pdf bib
Zero-Shot Entity Linking by Reading Entity Descriptions
Lajanugen Logeswaran | Ming-Wei Chang | Kenton Lee | Kristina Toutanova | Jacob Devlin | Honglak Lee
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.

pdf bib
Latent Retrieval for Weakly Supervised Open Domain Question Answering
Kenton Lee | Ming-Wei Chang | Kristina Toutanova
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.

pdf bib
Natural Questions: A Benchmark for Question Answering Research
Tom Kwiatkowski | Jennimaria Palomaki | Olivia Redfield | Michael Collins | Ankur Parikh | Chris Alberti | Danielle Epstein | Illia Polosukhin | Jacob Devlin | Kenton Lee | Kristina Toutanova | Llion Jones | Matthew Kelcey | Ming-Wei Chang | Andrew M. Dai | Jakob Uszkoreit | Quoc Le | Slav Petrov
Transactions of the Association for Computational Linguistics, Volume 7

We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.

pdf bib
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark | Kenton Lee | Ming-Wei Chang | Tom Kwiatkowski | Michael Collins | Kristina Toutanova
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper we study yes/no questions that are naturally occurring — meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.

pdf bib
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin | Ming-Wei Chang | Kenton Lee | Kristina Toutanova
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

2018

bib
Transactions of the Association for Computational Linguistics, Volume 6
Lillian Lee | Mark Johnson | Kristina Toutanova | Brian Roark
Transactions of the Association for Computational Linguistics, Volume 6

2017

bib
Transactions of the Association for Computational Linguistics, Volume 5
Lillian Lee | Mark Johnson | Kristina Toutanova
Transactions of the Association for Computational Linguistics, Volume 5

pdf bib
Cross-Sentence N-ary Relation Extraction with Graph LSTMs
Nanyun Peng | Hoifung Poon | Chris Quirk | Kristina Toutanova | Wen-tau Yih
Transactions of the Association for Computational Linguistics, Volume 5

Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.

pdf bib
A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji | Qinlong Wang | Kristina Toutanova | Yongen Gong | Steven Truong | Jianfeng Gao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Grammatical error correction (GEC) systems strive to correct both global errors inword order and usage, and local errors inspelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC.Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information, and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective incorrecting local errors that involve small edits in orthography.

pdf bib
NLP for Precision Medicine
Hoifung Poon | Chris Quirk | Kristina Toutanova | Wen-tau Yih
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

We will introduce precision medicine and showcase the vast opportunities for NLP in this burgeoning field with great societal impact. We will review pressing NLP problems, state-of-the art methods, and important applications, as well as datasets, medical resources, and practical issues. The tutorial will provide an accessible overview of biomedicine, and does not presume knowledge in biology or healthcare. The ultimate goal is to reduce the entry barrier for NLP researchers to contribute to this exciting domain.

2016

pdf bib
A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs
Kristina Toutanova | Chris Brockett | Ke M. Tran | Saleema Amershi
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

bib
Transactions of the Association for Computational Linguistics, Volume 4
Lillian Lee | Mark Johnson | Kristina Toutanova
Transactions of the Association for Computational Linguistics, Volume 4

pdf bib
E-TIPSY: Search Query Corpus Annotated with Entities, Term Importance, POS Tags, and Syntactic Parses
Yuval Marton | Kristina Toutanova
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We present E-TIPSY, a search query corpus annotated with named Entities, Term Importance, POS tags, and SYntactic parses. This corpus contains crowdsourced (gold) annotations of the three most important terms in each query. In addition, it contains automatically produced annotations of named entities, part-of-speech tags, and syntactic parses for the same queries. This corpus comes in two formats: (1) Sober Subset: annotations that two or more crowd workers agreed upon, and (2) Full Glass: all annotations. We analyze the strikingly low correlation between term importance and syntactic headedness, which invites research into effective ways of combining these different signals. Our corpus can serve as a benchmark for term importance methods aimed at improving search engine quality and as an initial step toward developing a dataset of gold linguistic analysis of web search queries. In addition, it can be used as a basis for linguistic inquiries into the kind of expressions used in search.

pdf bib
Compositional Learning of Embeddings for Relation Paths in Knowledge Base and Text
Kristina Toutanova | Xi Victoria Lin | Wen-tau Yih | Hoifung Poon | Chris Quirk
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Model Selection for Type-Supervised Learning with Application to POS Tagging
Kristina Toutanova | Waleed Ammar | Pallavi Choudhury | Hoifung Poon
Proceedings of the Nineteenth Conference on Computational Natural Language Learning

pdf bib
Grounded Semantic Parsing for Complex Knowledge Extraction
Ankur P. Parikh | Hoifung Poon | Kristina Toutanova
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Detecting Translation Direction: A Cross-Domain Study
Sauleh Eetemadi | Kristina Toutanova
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

pdf bib
Representing Text for Joint Embedding of Text and Knowledge Bases
Kristina Toutanova | Danqi Chen | Patrick Pantel | Hoifung Poon | Pallavi Choudhury | Michael Gamon
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Observed versus latent features for knowledge base and text inference
Kristina Toutanova | Danqi Chen
Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality

2014

pdf bib
Asymmetric Features Of Human Generated Translation
Sauleh Eetemadi | Kristina Toutanova
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Kristina Toutanova | Hua Wu
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Graph-based Semi-Supervised Learning of Translation Models from Monolingual Data
Avneesh Saluja | Hany Hassan | Kristina Toutanova | Chris Quirk
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Kristina Toutanova | Hua Wu
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf bib
Regularized Minimum Error Rate Training
Michel Galley | Chris Quirk | Colin Cherry | Kristina Toutanova
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Learning Non-linear Features for Machine Translation Using Gradient Boosting Machines
Kristina Toutanova | Byung-Gyu Ahn
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Beyond Left-to-Right: Multiple Decomposition Structures for SMT
Hui Zhang | Kristina Toutanova | Chris Quirk | Jianfeng Gao
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2012

pdf bib
MSR SPLAT, a language analysis toolkit
Chris Quirk | Pallavi Choudhury | Jianfeng Gao | Hisami Suzuki | Kristina Toutanova | Michael Gamon | Wen-tau Yih | Colin Cherry | Lucy Vanderwende
Proceedings of the Demonstration Session at the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Multilingual Named Entity Recognition using Parallel Data and Metadata from Wikipedia
Sungchul Kim | Kristina Toutanova | Hwanjo Yu
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2011

pdf bib
Unsupervised Bilingual Morpheme Segmentation and Alignment with Context-rich Hidden Semi-Markov Models
Jason Naradowsky | Kristina Toutanova
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Why Initialization Matters for IBM Model 1: Multiple Optima and Non-Strict Convexity
Kristina Toutanova | Michel Galley
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Learning Discriminative Projections for Text Similarity Measures
Wen-tau Yih | Kristina Toutanova | John C. Platt | Christopher Meek
Proceedings of the Fifteenth Conference on Computational Natural Language Learning

2010

pdf bib
Translingual Document Representations from Discriminative Projections
John Platt | Kristina Toutanova | Wen-tau Yih
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

pdf bib
Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment
Jason R. Smith | Chris Quirk | Kristina Toutanova
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

pdf bib
A Discriminative Lexicon Model for Complex Morphology
Minwoo Jeong | Kristina Toutanova | Hisami Suzuki | Chris Quirk
Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers

This paper describes successful applications of discriminative lexicon models to the statistical machine translation (SMT) systems into morphologically complex languages. We extend the previous work on discriminatively trained lexicon models to include more contextual information in making lexical selection decisions by building a single global log-linear model of translation selection. In offline experiments, we show that the use of the expanded contextual information, including morphological and syntactic features, help better predict words in three target languages with complex morphology (Bulgarian, Czech and Korean). We also show that these improved lexical prediction models make a positive impact in the end-to-end SMT scenario from English to these languages.

2009

pdf bib
Unsupervised Morphological Segmentation with Log-Linear Models
Hoifung Poon | Colin Cherry | Kristina Toutanova
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics

pdf bib
Joint Optimization for Machine Translation System Combination
Xiaodong He | Kristina Toutanova
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

pdf bib
A global model for joint lemmatization and part-of-speech prediction
Kristina Toutanova | Colin Cherry
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

2008

pdf bib
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language Learning
Alexander Clark | Kristina Toutanova
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language Learning

pdf bib
Applying Morphology Generation Models to Machine Translation
Kristina Toutanova | Hisami Suzuki | Achim Ruopp
Proceedings of ACL-08: HLT

pdf bib
Bayesian Semi-Supervised Chinese Word Segmentation for Statistical Machine Translation
Jia Xu | Jianfeng Gao | Kristina Toutanova | Hermann Ney
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

pdf bib
A Global Joint Model for Semantic Role Labeling
Kristina Toutanova | Aria Haghighi | Christopher D. Manning
Computational Linguistics, Volume 34, Number 2, June 2008 - Special Issue on Semantic Role Labeling

2007

pdf bib
Generating Case Markers in Machine Translation
Kristina Toutanova | Hisami Suzuki
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference

pdf bib
A Discriminative Syntactic Word Order Model for Machine Translation
Pi-Chuan Chang | Kristina Toutanova
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

pdf bib
A Comparative Study of Parameter Estimation Methods for Statistical Natural Language Processing
Jianfeng Gao | Galen Andrew | Mark Johnson | Kristina Toutanova
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

pdf bib
Generating Complex Morphology for Machine Translation
Einat Minkov | Kristina Toutanova | Hisami Suzuki
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

2006

pdf bib
Learning to Predict Case Markers in Japanese
Hisami Suzuki | Kristina Toutanova
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

pdf bib
Automatic Semantic Role Labeling
Scott Wen-tau Yih | Kristina Toutanova
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Tutorial Abstracts

pdf bib
Competitive generative models with structure learning for NLP classification tasks
Kristina Toutanova
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing

pdf bib
Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation
Arul Menezes | Kristina Toutanova | Chris Quirk
Proceedings on the Workshop on Statistical Machine Translation

2005

pdf bib
A Joint Model for Semantic Role Labeling
Aria Haghighi | Kristina Toutanova | Christopher Manning
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)

pdf bib
Joint Learning Improves Semantic Role Labeling
Kristina Toutanova | Aria Haghighi | Christopher Manning
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05)

2004

pdf bib
The Leaf Path Projection View of Parse Trees: Exploring String Kernels for HPSG Parse Selection
Kristina Toutanova | Penka Markova | Christopher Manning
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing

2003

pdf bib
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network
Kristina Toutanova | Dan Klein | Christopher D. Manning | Yoram Singer
Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics

2002

pdf bib
Combining Heterogeneous Classifiers for Word Sense Disambiguation
Dan Klein | Kristina Toutanova | H. Tolga Ilhan | Sepandar D. Kamvar | Christopher D. Manning
Proceedings of the ACL-02 Workshop on Word Sense Disambiguation: Recent Successes and Future Directions

pdf bib
Extensions to HMM-based Statistical Word Alignment Models
Kristina Toutanova | H. Tolga Ilhan | Christopher Manning
Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002)

pdf bib
Feature Selection for a Rich HPSG Grammar Using Decision Trees
Kristina Toutanova | Christopher D. Manning
COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002)

pdf bib
The LinGO Redwoods Treebank: Motivation and Preliminary Applications
Stephan Oepen | Kristina Toutanova | Stuart Shieber | Christopher Manning | Dan Flickinger | Thorsten Brants
COLING 2002: The 17th International Conference on Computational Linguistics: Project Notes

pdf bib
Pronunciation Modeling for Improved Spelling Correction
Kristina Toutanova | Robert Moore
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics

2001

pdf bib
Combining Heterogeneous Classifiers for Word-Sense Disambiguation
H. Tolga Ilhan | Sepandar D. Kamvar | Dan Klein | Christopher D. Manning | Kristina Toutanova
Proceedings of SENSEVAL-2 Second International Workshop on Evaluating Word Sense Disambiguation Systems

Search
Co-authors