Pre-trained vision and language models have demonstrated state-of-the-art capabilities over existing tasks involving images and texts, including visual question answering. However, it remains unclear whether these models possess the capability to answer questions that are not only querying visual content but knowledge-intensive and information-seeking. In this study, we introduce InfoSeek, a visual question answering dataset tailored for information-seeking questions that cannot be answered with only common sense knowledge. Using InfoSeek, we analyze various pre-trained visual question answering models and gain insights into their characteristics. Our findings reveal that state-of-the-art pre-trained multi-modal models (e.g., PaLI-X, BLIP2, InstructBLIP) face challenges in answering visual information-seeking questions, but fine-tuning on the InfoSeek dataset elicits models to use fine-grained knowledge that was learned during pre-training. Furthermore, we show that accurate visual entity recognition can be used to improve performance on InfoSeek by retrieving relevant documents, showing a significant space for improvement.
Visual Question Answering (VQA) has been primarily studied through the lens of the English language. Yet, tackling VQA in other languages in the same manner would require a considerable amount of resources. In this paper, we propose scalable solutions to multilingual visual question answering (mVQA), on both data and modeling fronts. We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers. Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages. Finally, we develop a simple, lightweight, and effective approach as well as benchmark state-of-the-art English and multilingual VQA models. We hope that our benchmark encourages further research on mVQA.
Training large-scale image captioning (IC) models demands access to a rich and diverse set of training examples that are expensive to curate both in terms of time and man-power. Instead, alt-text based captions gathered from the web is a far cheaper alternative to scale with the downside of being noisy. Recent modeling approaches to IC often fall short in terms of performance in leveraging these noisy datasets in favor of clean annotations. We address this problem with a simple yet effective technique of breaking down the task into two smaller, more controllable tasks – skeleton prediction and skeleton-based caption generation. Specifically, we show that sub-selecting content words as skeletons helps in generating improved and denoised captions when leveraging rich yet noisy alt-text–based uncurated datasets. We also show that the predicted English skeletons can further cross-lingually be leveraged to generate non-English captions, and present experimental results covering caption generation in French, Italian, German, Spanish and Hindi. We also show that skeleton-based prediction allows for better control of certain caption properties, such as length, content, and gender expression, providing a handle to perform human-in-the-loop interpretable semi-automatic corrections.
Visual Question Answering (VQA) has benefited from increasingly sophisticated models, but has not enjoyed the same level of engagement in terms of data creation. In this paper, we propose a method that automatically derives VQA examples at volume, by leveraging the abundance of existing image-caption annotations combined with neural models for textual question generation. We show that the resulting data is of high-quality. VQA models trained on our data improve state-of-the-art zero-shot accuracy by double digits and achieve a level of robustness that lacks in the same model trained on human-annotated VQA data.
One challenge in evaluating visual question answering (VQA) models in the cross-dataset adaptation setting is that the distribution shifts are multi-modal, making it difficult to identify if it is the shifts in visual or language features that play a key role. In this paper, we propose a semi-automatic framework for generating disentangled shifts by introducing a controllable visual question-answer generation (VQAG) module that is capable of generating highly-relevant and diverse question-answer pairs with the desired dataset style. We use it to create CrossVQA, a collection of test splits for assessing VQA generalization based on the VQA2, VizWiz, and Open Images datasets. We provide an analysis of our generated datasets and demonstrate its utility by using them to evaluate several state-of-the-art VQA systems. One important finding is that the visual shifts in cross-dataset VQA matter more than the language shifts. More broadly, we present a scalable framework for systematically evaluating the machine with little human intervention.
Object detection plays an important role in current solutions to vision and language tasks like image captioning and visual question answering. However, popular models like Faster R-CNN rely on a costly process of annotating ground-truths for both the bounding boxes and their corresponding semantic labels, making it less amenable as a primitive task for transfer learning. In this paper, we examine the effect of decoupling box proposal and featurization for down-stream tasks. The key insight is that this allows us to leverage a large amount of labeled annotations that were previously unavailable for standard object detection benchmarks. Empirically, we demonstrate that this leads to effective transfer learning and improved image captioning and visual question answering models, as measured on publicly-available benchmarks.
We study three general multi-task learning (MTL) approaches on 11 sequence tagging tasks. Our extensive empirical results show that in about 50% of the cases, jointly learning all 11 tasks improves upon either independent or pairwise learning of the tasks. We also show that pairwise MTL can inform us what tasks can benefit others or what tasks can be benefited if they are learned jointly. In particular, we identify tasks that can always benefit others as well as tasks that can always be harmed by others. Interestingly, one of our MTL approaches yields embeddings of the tasks that reveal the natural clustering of semantic and syntactic tasks. Our inquiries have opened the doors to further utilization of MTL in NLP.