Wei Fan


2024

pdf bib
PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
Haoran Li | Dadi Guo | Donghao Li | Wei Fan | Qi Hu | Xin Liu | Chunkit Chan | Duanyi Yao | Yuan Yao | Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present PrivLM-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage. PrivLM-Bench first clearly defines multi-faceted privacy objectives. Then, PrivLM-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, PrivLM-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.

pdf bib
AbsInstruct: Eliciting Abstraction Ability from LLMs through Explanation Tuning with Plausibility Estimation
Zhaowei Wang | Wei Fan | Qing Zong | Hongming Zhang | Sehyun Choi | Tianqing Fang | Xin Liu | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study. Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored. In this work, we design the framework AbsInstruct to enhance LLMs’ abstraction ability through instruction tuning. The framework builds instructions with in-depth explanations to assist LLMs in capturing the underlying rationale of abstraction. Meanwhile, we introduce a plausibility estimator to select instructions that are more consistent with the abstraction knowledge of LLMs to be aligned. Then, our framework combines abstraction instructions with general-purpose ones to build a hybrid dataset. Extensive experiments and analyses demonstrate that our framework can considerably enhance LLMs’ abstraction ability with strong generalization performance while maintaining their general instruction-following abilities.

pdf bib
GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory
Wei Fan | Haoran Li | Zheye Deng | Weiqi Wang | Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Privacy issues arise prominently during the inappropriate transmission of information between entities. Existing research primarily studies privacy by exploring various privacy attacks, defenses, and evaluations within narrowly predefined patterns, while neglecting that privacy is not an isolated, context-free concept limited to traditionally sensitive data (e.g., social security numbers), but intertwined with intricate social contexts that complicate the identification and analysis of potential privacy violations. The advent of Large Language Models (LLMs) offers unprecedented opportunities for incorporating the nuanced scenarios outlined in privacy laws to tackle these complex privacy issues. However, the scarcity of open-source relevant case studies restricts the efficiency of LLMs in aligning with specific legal statutes. To address this challenge, we introduce a novel framework, GoldCoin, designed to efficiently ground LLMs in privacy laws for judicial assessing privacy violations. Our framework leverages the theory of contextual integrity as a bridge, creating numerous synthetic scenarios grounded in relevant privacy statutes (e.g., HIPAA), to assist LLMs in comprehending the complex contexts for identifying privacy risks in the real world. Extensive experimental results demonstrate that GoldCoin markedly enhances LLMs’ capabilities in recognizing privacy risks across real court cases, surpassing the baselines on different judicial tasks.

pdf bib
Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction
Zheye Deng | Chunkit Chan | Weiqi Wang | Yuxi Sun | Wei Fan | Tianshi Zheng | Yauwai Yim | Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called T3(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our codeand data can be found at https://github.com/HKUST-KnowComp/LiveSum.

pdf bib
NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding
Chunkit Chan | Cheng Jiayang | Yauwai Yim | Zheye Deng | Wei Fan | Haoran Li | Xin Liu | Hongming Zhang | Weiqi Wang | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have sparked substantial interest and debate concerning their potential emergence of Theory of Mind (ToM) ability. Theory of mind evaluations currently focuses on testing models using machine-generated data or game settings prone to shortcuts and spurious correlations, which lacks evaluation of machine ToM ability in real-world human interaction scenarios. This poses a pressing demand to develop new real-world scenario benchmarks. We introduce NegotiationToM, a new benchmark designed to stress-test machine ToM in real-world negotiation surrounding covered multi-dimensional mental states (i.e., desires, beliefs, and intentions). Our benchmark builds upon the Belief-Desire-Intention (BDI) agent modeling theory and conducts the necessary empirical experiments to evaluate large language models. Our findings demonstrate that NegotiationToM is challenging for state-of-the-art LLMs, as they consistently perform significantly worse than humans, even when employing the chain-of-thought (CoT) method.

2023

pdf bib
Multi-step Jailbreaking Privacy Attacks on ChatGPT
Haoran Li | Dadi Guo | Wei Fan | Mingshi Xu | Jie Huang | Fanpu Meng | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023

With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given appropriate prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI’s ChatGPT and the New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause new privacy threats. To this end, we conduct extensive experiments to support our claims and discuss LLMs’ privacy implications.

2022

pdf bib
TranSHER: Translating Knowledge Graph Embedding with Hyper-Ellipsoidal Restriction
Yizhi Li | Wei Fan | Chao Liu | Chenghua Lin | Jiang Qian
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge graph embedding methods are important for the knowledge graph completion (or link prediction) task.One state-of-the-art method, PairRE, leverages two separate vectors to model complex relations (i.e., 1-to-N, N-to-1, and N-to-N) in knowledge graphs. However, such a method strictly restricts entities on the hyper-ellipsoid surfaces which limits the optimization of entity distribution, leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a novel score function TranSHER, which leverages relation-specific translations between head and tail entities to relax the constraint of hyper-ellipsoid restrictions. By introducing an intuitive and simple relation-specific translation, TranSHER can provide more direct guidance on optimization and capture more semantic characteristics of entities with complex relations. Experimental results show that TranSHER achieves state-of-the-art performance on link prediction and generalizes well to datasets in different domains and scales. Our codes are public available athttps://github.com/yizhilll/TranSHER.

2021

pdf bib
Multiplex Graph Neural Network for Extractive Text Summarization
Baoyu Jing | Zeyu You | Tao Yang | Wei Fan | Hanghang Tong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged graph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) within the documents to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity and natural connection relationships), nor model intra-sentential relationships (e.g, semantic similarity and syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate effectiveness of our method.

2020

pdf bib
Automatic Distractor Generation for Multiple Choice Questions in Standard Tests
Zhaopeng Qiu | Xian Wu | Wei Fan
Proceedings of the 28th International Conference on Computational Linguistics

To assess knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests. However, the composition of the multiple choice question, especially the construction of distractors is quite challenging. The distractors are required to both incorrect and plausible enough to confuse the learners who did not master the knowledge. Currently, the distractors are generated by domain experts which are both expensive and time-consuming. This urges the emergence of automatic distractor generation, which can benefit various standard tests in a wide range of domains. In this paper, we propose a question and answer guided distractor generation (EDGE) framework to automate distractor generation. EDGE consists of three major modules: (1) the Reforming Question Module and the Reforming Passage Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2) the Distractor Generator Module applies attention mechanism to control the level of plausibility. Experimental results on a large-scale public dataset demonstrate that our model significantly outperforms existing models and achieves a new state-of-the-art.

pdf bib
Commonsense Evidence Generation and Injection in Reading Comprehension
Ye Liu | Tao Yang | Zeyu You | Wei Fan | Philip S. Yu
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Human tackle reading comprehension not only based on the given context itself but often rely on the commonsense beyond. To empower the machine with commonsense reasoning, in this paper, we propose a Commonsense Evidence Generation and Injection framework in reading comprehension, named CEGI. The framework injects two kinds of auxiliary commonsense evidence into comprehensive reading to equip the machine with the ability of rational thinking. Specifically, we build two evidence generators: one aims to generate textual evidence via a language model; the other aims to extract factual evidence (automatically aligned text-triples) from a commonsense knowledge graph after graph completion. Those evidences incorporate contextual commonsense and serve as the additional inputs to the reasoning model. Thereafter, we propose a deep contextual encoder to extract semantic relationships among the paragraph, question, option, and evidence. Finally, we employ a capsule network to extract different linguistic units (word and phrase) from the relations, and dynamically predict the optimal option based on the extracted units. Experiments on the CosmosQA dataset demonstrate that the proposed CEGI model outperforms the current state-of-the-art approaches and achieves the highest accuracy (83.6%) on the leaderboard.

2019

pdf bib
Multi-grained Named Entity Recognition
Congying Xia | Chenwei Zhang | Tao Yang | Yaliang Li | Nan Du | Xian Wu | Wei Fan | Fenglong Ma | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.

pdf bib
Joint Slot Filling and Intent Detection via Capsule Neural Networks
Chenwei Zhang | Yaliang Li | Nan Du | Wei Fan | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Being able to recognize words as slots and detect the intent of an utterance has been a keen issue in natural language understanding. The existing works either treat slot filling and intent detection separately in a pipeline manner, or adopt joint models which sequentially label slots while summarizing the utterance-level intent without explicitly preserving the hierarchical relationship among words, slots, and intents. To exploit the semantic hierarchy for effective modeling, we propose a capsule-based neural network model which accomplishes slot filling and intent detection via a dynamic routing-by-agreement schema. A re-routing schema is proposed to further synergize the slot filling performance using the inferred intent representation. Experiments on two real-world datasets show the effectiveness of our model when compared with other alternative model architectures, as well as existing natural language understanding services.

2018

pdf bib
Cooperative Denoising for Distantly Supervised Relation Extraction
Kai Lei | Daoyuan Chen | Yaliang Li | Nan Du | Min Yang | Wei Fan | Ying Shen
Proceedings of the 27th International Conference on Computational Linguistics

Distantly supervised relation extraction greatly reduces human efforts in extracting relational facts from unstructured texts. However, it suffers from noisy labeling problem, which can degrade its performance. Meanwhile, the useful information expressed in knowledge graph is still underutilized in the state-of-the-art methods for distantly supervised relation extraction. In the light of these challenges, we propose CORD, a novelCOopeRativeDenoising framework, which consists two base networks leveraging text corpus and knowledge graph respectively, and a cooperative module involving their mutual learning by the adaptive bi-directional knowledge distillation and dynamic ensemble with noisy-varying instances. Experimental results on a real-world dataset demonstrate that the proposed method reduces the noisy labels and achieves substantial improvement over the state-of-the-art methods.

pdf bib
Knowledge as A Bridge: Improving Cross-domain Answer Selection with External Knowledge
Yang Deng | Ying Shen | Min Yang | Yaliang Li | Nan Du | Wei Fan | Kai Lei
Proceedings of the 27th International Conference on Computational Linguistics

Answer selection is an important but challenging task. Significant progresses have been made in domains where a large amount of labeled training data is available. However, obtaining rich annotated data is a time-consuming and expensive process, creating a substantial barrier for applying answer selection models to a new domain which has limited labeled data. In this paper, we propose Knowledge-aware Attentive Network (KAN), a transfer learning framework for cross-domain answer selection, which uses the knowledge base as a bridge to enable knowledge transfer from the source domain to the target domains. Specifically, we design a knowledge module to integrate the knowledge-based representational learning into answer selection models. The learned knowledge-based representations are shared by source and target domains, which not only leverages large amounts of cross-domain data, but also benefits from a regularization effect that leads to more general representations to help tasks in new domains. To verify the effectiveness of our model, we use SQuAD-T dataset as the source domain and three other datasets (i.e., Yahoo QA, TREC QA and InsuranceQA) as the target domains. The experimental results demonstrate that KAN has remarkable applicability and generality, and consistently outperforms the strong competitors by a noticeable margin for cross-domain answer selection.