Xinyu Wang


2024

pdf bib
Mirror: Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning
Hanqi Yan | Qinglin Zhu | Xinyu Wang | Lin Gui | Yulan He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While Large language models (LLMs) have the capability to iteratively reflect on their own outputs, recent studies have observed their struggles with knowledge-rich problems without access to external resources. In addition to the inefficiency of LLMs in self-assessment, we also observe that LLMs struggle to revisit their predictions despite receiving explicit negative feedback. Therefore, We propose Mirror, a Multiple-perspective self-reflection method for knowledge-rich reasoning, to avoid getting stuck at a particular reflection iteration. Mirror enables LLMs to reflect from multiple-perspective clues, achieved through a heuristic interaction between a Navigator and a Reasoner. It guides agents toward diverse yet plausibly reliable reasoning trajectory without access to ground truth by encouraging (1) diversity of directions generated by Navigator and (2) agreement among strategically induced perturbations in responses generated by the Reasoner. The experiments on five reasoning datasets demonstrate that Mirror’s superiority over several contemporary self-reflection approaches. Additionally, the ablation study studies clearly indicate that our strategies alleviate the aforementioned challenges.

pdf bib
Deciphering Oracle Bone Language with Diffusion Models
Haisu Guan | Huanxin Yang | Xinyu Wang | Shengwei Han | Yongge Liu | Lianwen Jin | Xiang Bai | Yuliang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Originating from China’s Shang Dynasty approximately 3,000 years ago, the Oracle Bone Script (OBS) is a cornerstone in the annals of linguistic history, predating many established writing systems. Despite the discovery of thousands of inscriptions, a vast expanse of OBS remains undeciphered, casting a veil of mystery over this ancient language. The emergence of modern AI technologies presents a novel frontier for OBS decipherment, challenging traditional NLP methods that rely heavily on large textual corpora, a luxury not afforded by historical languages. This paper introduces a novel approach by adopting image generation techniques, specifically through the development of Oracle Bone Script Decipher (OBSD). Utilizing a conditional diffusion-based strategy, OBSD generates vital clues for decipherment, charting a new course for AI-assisted analysis of ancient languages. To validate its efficacy, extensive experiments were conducted on an oracle bone script dataset, with quantitative results demonstrating the effectiveness of OBSD.

pdf bib
Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts
Zhuo Chen | Xinyu Wang | Yong Jiang | Pengjun Xie | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: ACL 2024

In the era of large language models, applying techniques such as Retrieval Augmented Generation can better address Open-Domain Question-Answering problems. Due to constraints including model sizes and computing resources, the length of context is often limited, and it becomes challenging to empower the model to cover overlong contexts while answering questions from open domains. This paper proposes a general and convenient method to cover longer contexts in Open-Domain Question-Answering tasks. %It leverages a small encoder language model that effectively encodes contexts, and the encoding applies cross-attention with origin inputs.It leverages a small encoder and cross-attention mechanism and effectively encodes contexts. With our method, the original language models can cover several times longer contexts while keeping the computing requirements close to the baseline. Our experiments demonstrate that after fine-tuning, there is improved performance across two held-in datasets, four held-out datasets, and also in two In Context Learning settings. Our code will be released at https://github.com/Alibaba-NLP/Vec-RA-ODQA.

pdf bib
Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond
Xinyu Wang | Hainiu Xu | Lin Gui | Yulan He
Findings of the Association for Computational Linguistics: ACL 2024

Task embedding, a meta-learning technique that captures task-specific information, has gained popularity, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradient-free manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To hardness the potential of task embeddings in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios, while maintaining their performance comparable to architecture-specific methods.

pdf bib
RaFe: Ranking Feedback Improves Query Rewriting for RAG
Shengyu Mao | Yong Jiang | Boli Chen | Xiao Li | Peng Wang | Xinyu Wang | Pengjun Xie | Fei Huang | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

As Large Language Models (LLMs) and Retrieval Augmentation Generation (RAG) techniques have evolved, query rewriting has been widely incorporated into the RAG system for downstream tasks like open-domain QA to enhance document retrieval by reformulating queries. Many works have attempted to improve query rewriting in smaller models to avoid rewriting with costly LLMs, and the most common method is to employ reinforcement learning for feedback training. However, current methods require annotations (labeled relevant documents or downstream answers) or predesigned rewards for feedback, lack generalization, and fail to utilize signals tailored for query rewriting. In this paper, we propose RaFe, a framework for training query rewriting models. By leveraging reranker, RaFe provides ranking feedback aligned well with the rewriting objectives without needing signals from annotations and supports both online and offline training models. Experimental results demonstrate that with a general and publicly available reranker, RaFe can effectively steer the training for rewrite models.

pdf bib
Topic Taxonomy Construction from ESG Reports
Saif Majdi AlNajjar | Xinyu Wang | Yulan He
Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing

The surge in Environmental, Societal, and Governance (ESG) reports, essential for corporate transparency and modern investments, presents a challenge for investors due to their varying lengths and sheer volume. We present a novel methodology, called MultiTaxoGen, for creating topic taxonomies designed specifically for analysing the ESG reports. Topic taxonomies serve to illustrate topics covered in a corpus of ESG reports while also highlighting the hierarchical relationships between them. Unfortunately, current state-of-the-art approaches for constructing topic taxonomies are designed for more general datasets, resulting in ambiguous topics and the omission of many latent topics presented in ESG-focused corpora. This makes them unsuitable for the specificity required by investors. Our method instead adapts topic modelling techniques by employing them recursively on each topic’s local neighbourhood, the subcorpus of documents assigned to that topic. This iterative approach allows us to identify the children topics and offers a better understanding of topic hierarchies in a fine-grained paradigm. Our findings reveal that our method captures more latent topics in our ESG report corpus than the leading method and provides more coherent topics with comparable relational accuracy.

2023

pdf bib
Document-Level Multi-Event Extraction with Event Proxy Nodes and Hausdorff Distance Minimization
Xinyu Wang | Lin Gui | Yulan He
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document-level multi-event extraction aims to extract the structural information from a given document automatically. Most recent approaches usually involve two steps: (1) modeling entity interactions; (2) decoding entity interactions into events. However, such approaches ignore a global view of inter-dependency of multiple events. Moreover, an event is decoded by iteratively merging its related entities as arguments, which might suffer from error propagation and is computationally inefficient. In this paper, we propose an alternative approach for document-level multi-event extraction with event proxy nodes and Hausdorff distance minimization. The event proxy nodes, representing pseudo-events, are able to build connections with other event proxy nodes, essentially capturing global information. The Hausdorff distance makes it possible to compare the similarity between the set of predicted events and the set of ground-truth events. By directly minimizing Hausdorff distance, the model is trained towards the global optimum directly, which improves performance and reduces training time. Experimental results show that our model outperforms previous state-of-the-art method in F1-score on two datasets with only a fraction of training time.

pdf bib
A Scalable Framework for Table of Contents Extraction from Complex ESG Annual Reports
Xinyu Wang | Lin Gui | Yulan He
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Table of contents (ToC) extraction centres on structuring documents in a hierarchical manner. In this paper, we propose a new dataset, ESGDoc, comprising 1,093 ESG annual reports from 563 companies spanning from 2001 to 2022. These reports pose significant challenges due to their diverse structures and extensive length. To address these challenges, we propose a new framework for Toc extraction, consisting of three steps: (1) Constructing an initial tree of text blocks based on reading order and font sizes; (2) Modelling each tree node (or text block) independently by considering its contextual information captured in node-centric subtree; (3) Modifying the original tree by taking appropriate action on each tree node (Keep, Delete, or Move). This construction-modelling-modification (CMM) process offers several benefits. It eliminates the need for pairwise modelling of section headings as in previous approaches, making document segmentation practically feasible. By incorporating structured information, each section heading can leverage both local and long-distance context relevant to itself. Experimental results show that our approach outperforms the previous state-of-the-art baseline with a fraction of running time. Our framework proves its scalability by effectively handling documents of any length.

2022

pdf bib
Named Entity and Relation Extraction with Multi-Modal Retrieval
Xinyu Wang | Jiong Cai | Yong Jiang | Pengjun Xie | Kewei Tu | Wei Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE. Most existing efforts largely focused on directly extracting potentially useful information from images (such as pixel-level features, identified objects, and associated captions).However, such extraction processes may not be knowledge aware, resulting in information that may not be highly relevant.In this paper, we propose a novel Multi-modal Retrieval based framework (MoRe).MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.Next, the retrieval results are sent to the textual and visual models respectively for predictions.Finally, a Mixture of Experts (MoE) module combines the predictions from the two models to make the final decision.Our experiments show that both our textual model and visual model can achieve state-of-the-art performance on four multi-modal NER datasets and one multi-modal RE dataset.With MoE, the model performance can be further improved and our analysis demonstrates the benefits of integrating both textual and visual cues for such tasks.

pdf bib
ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition
Xinyu Wang | Min Gui | Yong Jiang | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Kewei Tu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recently, Multi-modal Named Entity Recognition (MNER) has attracted a lot of attention. Most of the work utilizes image information through region-level visual representations obtained from a pretrained object detector and relies on an attention mechanism to model the interactions between image and text representations. However, it is difficult to model such interactions as image and text representations are trained separately on the data of their respective modality and are not aligned in the same space. As text representations take the most important role in MNER, in this paper, we propose Image-text Alignments (ITA) to align image features into the textual space, so that the attention mechanism in transformer-based pretrained textual embeddings can be better utilized. ITA first aligns the image into regional object tags, image-level captions and optical characters as visual contexts, concatenates them with the input texts as a new cross-modal input, and then feeds it into a pretrained textual embedding model. This makes it easier for the attention module of a pretrained textual embedding model to model the interaction between the two modalities since they are both represented in the textual space. ITA further aligns the output distributions predicted from the cross-modal input and textual input views so that the MNER model can be more practical in dealing with text-only inputs and robust to noises from images. In our experiments, we show that ITA models can achieve state-of-the-art accuracy on multi-modal Named Entity Recognition datasets, even without image information.

pdf bib
DAMO-NLP at SemEval-2022 Task 11: A Knowledge-based System for Multilingual Named Entity Recognition
Xinyu Wang | Yongliang Shen | Jiong Cai | Tao Wang | Xiaobin Wang | Pengjun Xie | Fei Huang | Weiming Lu | Yueting Zhuang | Kewei Tu | Wei Lu | Yong Jiang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

The MultiCoNER shared task aims at detecting semantically ambiguous and complex named entities in short and low-context settings for multiple languages. The lack of contexts makes the recognition of ambiguous named entities challenging. To alleviate this issue, our team DAMO-NLP proposes a knowledge-based system, where we build a multilingual knowledge base based on Wikipedia to provide related context information to the named entity recognition (NER) model. Given an input sentence, our system effectively retrieves related contexts from the knowledge base. The original input sentences are then augmented with such context information, allowing significantly better contextualized token representations to be captured. Our system wins 10 out of 13 tracks in the MultiCoNER shared task.

2021

pdf bib
Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor
Xinyu Wang | Yong Jiang | Zhaohui Yan | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge distillation is a critical technique to transfer knowledge between models, typically from a large model (the teacher) to a more fine-grained one (the student). The objective function of knowledge distillation is typically the cross-entropy between the teacher and the student’s output distributions. However, for structured prediction problems, the output space is exponential in size; therefore, the cross-entropy objective becomes intractable to compute and optimize directly. In this paper, we derive a factorized form of the knowledge distillation objective for structured prediction, which is tractable for many typical choices of the teacher and student models. In particular, we show the tractability and empirical effectiveness of structural knowledge distillation between sequence labeling and dependency parsing models under four different scenarios: 1) the teacher and student share the same factorization form of the output structure scoring function; 2) the student factorization produces more fine-grained substructures than the teacher factorization; 3) the teacher factorization produces more fine-grained substructures than the student factorization; 4) the factorization forms from the teacher and the student are incompatible.

pdf bib
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent advances in Named Entity Recognition (NER) show that document-level contexts can significantly improve model performance. In many application scenarios, however, such contexts are not available. In this paper, we propose to find external contexts of a sentence by retrieving and selecting a set of semantically relevant texts through a search engine, with the original sentence as the query. We find empirically that the contextual representations computed on the retrieval-based input view, constructed through the concatenation of a sentence and its external contexts, can achieve significantly improved performance compared to the original input view based only on the sentence. Furthermore, we can improve the model performance of both input views by Cooperative Learning, a training method that encourages the two input views to produce similar contextual representations or output label distributions. Experiments show that our approach can achieve new state-of-the-art performance on 8 NER data sets across 5 domains.

pdf bib
Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.

pdf bib
Dependency Induction Through the Lens of Visual Perception
Ruisi Su | Shruti Rijhwani | Hao Zhu | Junxian He | Xinyu Wang | Yonatan Bisk | Graham Neubig
Proceedings of the 25th Conference on Computational Natural Language Learning

Most previous work on grammar induction focuses on learning phrasal or dependency structure purely from text. However, because the signal provided by text alone is limited, recently introduced visually grounded syntax models make use of multimodal information leading to improved performance in constituency grammar induction. However, as compared to dependency grammars, constituency grammars do not provide a straightforward way to incorporate visual information without enforcing language-specific heuristics. In this paper, we propose an unsupervised grammar induction model that leverages word concreteness and a structural vision-based heuristic to jointly learn constituency-structure and dependency-structure grammars. Our experiments find that concreteness is a strong indicator for learning dependency grammars, improving the direct attachment score (DAS) by over 50% as compared to state-of-the-art models trained on pure text. Next, we propose an extension of our model that leverages both word concreteness and visual semantic role labels in constituency and dependency parsing. Our experiments show that the proposed extension outperforms the current state-of-the-art visually grounded models in constituency parsing even with a smaller grammar size.

pdf bib
Enhanced Universal Dependency Parsing with Automated Concatenation of Embeddings
Xinyu Wang | Zixia Jia | Yong Jiang | Kewei Tu
Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)

This paper describe the system used in our submission to the IWPT 2021 Shared Task. Our system is a graph-based parser with the technique of Automated Concatenation of Embeddings (ACE). Because recent work found that better word representations can be obtained by concatenating different types of embeddings, we use ACE to automatically find the better concatenation of embeddings for the task of enhanced universal dependencies. According to official results averaged on 17 languages, our system rank 2nd over 9 teams.

2020

pdf bib
Second-Order Neural Dependency Parsing with Message Passing and End-to-End Training
Xinyu Wang | Kewei Tu
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

In this paper, we propose second-order graph-based neural dependency parsing using message passing and end-to-end neural networks. We empirically show that our approaches match the accuracy of very recent state-of-the-art second-order graph-based neural dependency parsers and have significantly faster speed in both training and testing. We also empirically show the advantage of second-order parsing over first-order parsing and observe that the usefulness of the head-selection structured constraint vanishes when using BERT embedding.

pdf bib
Structure-Level Knowledge Distillation For Multilingual Sequence Labeling
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Fei Huang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student’s and the teachers’ structure-level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.

pdf bib
Correcting the Misuse: A Method for the Chinese Idiom Cloze Test
Xinyu Wang | Hongsheng Zhao | Tan Yang | Hongbo Wang
Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

The cloze test for Chinese idioms is a new challenge in machine reading comprehension: given a sentence with a blank, choosing a candidate Chinese idiom which matches the context. Chinese idiom is a type of Chinese idiomatic expression. The common misuse of Chinese idioms leads to error in corpus and causes error in the learned semantic representation of Chinese idioms. In this paper, we introduce the definition written by Chinese experts to correct the misuse. We propose a model for the Chinese idiom cloze test integrating various information effectively. We propose an attention mechanism called Attribute Attention to balance the weight of different attributes among different descriptions of the Chinese idiom. Besides the given candidates of every blank, we also try to choose the answer from all Chinese idioms that appear in the dataset as the extra loss due to the uniqueness and specificity of Chinese idioms. In experiments, our model outperforms the state-of-the-art model.

pdf bib
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.

pdf bib
More Embeddings, Better Sequence Labelers?
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent work proposes a family of contextual embeddings that significantly improves the accuracy of sequence labelers over non-contextual embeddings. However, there is no definite conclusion on whether we can build better sequence labelers by combining different kinds of embeddings in various settings. In this paper, we conduct extensive experiments on 3 tasks over 18 datasets and 8 languages to study the accuracy of sequence labeling with various embedding concatenations and make three observations: (1) concatenating more embedding variants leads to better accuracy in rich-resource and cross-domain settings and some conditions of low-resource settings; (2) concatenating contextual sub-word embeddings with contextual character embeddings hurts the accuracy in extremely low-resource settings; (3) based on the conclusion of (1), concatenating additional similar contextual embeddings cannot lead to further improvements. We hope these conclusions can help people build stronger sequence labelers in various settings.

pdf bib
Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture of Training Data
Xinyu Wang | Yong Jiang | Kewei Tu
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

This paper presents the system used in our submission to the IWPT 2020 Shared Task. Our system is a graph-based parser with second-order inference. For the low-resource Tamil corpora, we specially mixed the training data of Tamil with other languages and significantly improved the performance of Tamil. Due to our misunderstanding of the submission requirements, we submitted graphs that are not connected, which makes our system only rank 6th over 10 teams. However, after we fixed this problem, our system is 0.6 ELAS higher than the team that ranked 1st in the official results.

pdf bib
Building a Bridge: A Method for Image-Text Sarcasm Detection Without Pretraining on Image-Text Data
Xinyu Wang | Xiaowen Sun | Tan Yang | Hongbo Wang
Proceedings of the First International Workshop on Natural Language Processing Beyond Text

Sarcasm detection in social media with text and image is becoming more challenging. Previous works of image-text sarcasm detection were mainly to fuse the summaries of text and image: different sub-models read the text and image respectively to get the summaries, and fuses the summaries. Recently, some multi-modal models based on the architecture of BERT are proposed such as ViLBERT. However, they can only be pretrained on the image-text data. In this paper, we propose an image-text model for sarcasm detection using the pretrained BERT and ResNet without any further pretraining. BERT and ResNet have been pretrained on much larger text or image data than image-text data. We connect the vector spaces of BERT and ResNet to utilize more data. We use the pretrained Multi-Head Attention of BERT to model the text and image. Besides, we propose a 2D-Intra-Attention to extract the relationships between words and images. In experiments, our model outperforms the state-of-the-art model.

pdf bib
Sketch-Driven Regular Expression Generation from Natural Language and Examples
Xi Ye | Qiaochu Chen | Xinyu Wang | Isil Dillig | Greg Durrett
Transactions of the Association for Computational Linguistics, Volume 8

Recent systems for converting natural language descriptions into regular expressions (regexes) have achieved some success, but typically deal with short, formulaic text and can only produce simple regexes. Real-world regexes are complex, hard to describe with brief sentences, and sometimes require examples to fully convey the user’s intent. We present a framework for regex synthesis in this setting where both natural language (NL) and examples are available. First, a semantic parser (either grammar-based or neural) maps the natural language description into an intermediate sketch, which is an incomplete regex containing holes to denote missing components. Then a program synthesizer searches over the regex space defined by the sketch and finds a regex that is consistent with the given string examples. Our semantic parser can be trained purely from weak supervision based on correctness of the synthesized regex, or it can leverage heuristically derived sketches. We evaluate on two prior datasets (Kushman and Barzilay 2013; Locascio et al. 2016) and a real-world dataset from Stack Overflow. Our system achieves state-of-the-art performance on the prior datasets and solves 57% of the real-world dataset, which existing neural systems completely fail on.1

2019

pdf bib
ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with Second-Order Edge Inference for Cross-Framework Meaning Representation Parsing
Xinyu Wang | Yixian Liu | Zixia Jia | Chengyue Jiang | Kewei Tu
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

This paper presents the system used in our submission to the CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. Our system is a graph-based parser which combines an extended pointer-generator network that generates nodes and a second-order mean field variational inference module that predicts edges. Our system achieved 1st and 2nd place for the DM and PSD frameworks respectively on the in-framework ranks and achieved 3rd place for the DM framework on the cross-framework ranks.

pdf bib
Second-Order Semantic Dependency Parsing with End-to-End Neural Networks
Xinyu Wang | Jingxian Huang | Kewei Tu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantic dependency parsing aims to identify semantic relationships between words in a sentence that form a graph. In this paper, we propose a second-order semantic dependency parser, which takes into consideration not only individual dependency edges but also interactions between pairs of edges. We show that second-order parsing can be approximated using mean field (MF) variational inference or loopy belief propagation (LBP). We can unfold both algorithms as recurrent layers of a neural network and therefore can train the parser in an end-to-end manner. Our experiments show that our approach achieves state-of-the-art performance.