Yangming Li


2022

pdf bib
Rethinking Negative Sampling for Handling Missing Entity Annotations
Yangming Li | Lemao Liu | Shuming Shi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Negative sampling is highly effective in handling missing annotations for named entity recognition (NER). One of our contributions is an analysis on how it makes sense through introducing two insightful concepts: missampling and uncertainty. Empirical studies show low missampling rate and high uncertainty are both essential for achieving promising performances with negative sampling. Based on the sparsity of named entities, we also theoretically derive a lower bound for the probability of zero missampling rate, which is only relevant to sentence length. The other contribution is an adaptive and weighted sampling distribution that further improves negative sampling via our former analysis. Experiments on synthetic datasets and well-annotated datasets (e.g., CoNLL-2003) show that our proposed approach benefits negative sampling in terms of F1 score and loss convergence. Besides, models with improved negative sampling have achieved new state-of-the-art results on real-world datasets (e.g., EC).

2021

pdf bib
Rewriter-Evaluator Architecture for Neural Machine Translation
Yangming Li | Kaisheng Yao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A few approaches have been developed to improve neural machine translation (NMT) models with multiple passes of decoding. However, their performance gains are limited because of lacking proper policies to terminate the multi-pass process. To address this issue, we introduce a novel architecture of Rewriter-Evaluator. Translating a source sentence involves multiple rewriting passes. In every pass, a rewriter generates a new translation to improve the past translation. Termination of this multi-pass process is determined by a score of translation quality estimated by an evaluator. We also propose prioritized gradient descent (PGD) to jointly and efficiently train the rewriter and the evaluator. Extensive experiments on three machine translation tasks show that our architecture notably improves the performances of NMT models and significantly outperforms prior methods. An oracle experiment reveals that it can largely reduce performance gaps to the oracle policy. Experiments confirm that the evaluator trained with PGD is more accurate than prior methods in determining proper numbers of rewriting.

pdf bib
TexSmart: A System for Enhanced Natural Language Understanding
Lemao Liu | Haisong Zhang | Haiyun Jiang | Yangming Li | Enbo Zhao | Kun Xu | Linfeng Song | Suncong Zheng | Botong Zhou | Dick Zhu | Xiao Feng | Tao Chen | Tao Yang | Dong Yu | Feng Zhang | ZhanHui Kang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

This paper introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts.

pdf bib
Fine-grained Entity Typing without Knowledge Base
Jing Qian | Yibin Liu | Lemao Liu | Yangming Li | Haiyun Jiang | Haisong Zhang | Shuming Shi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Existing work on Fine-grained Entity Typing (FET) typically trains automatic models on the datasets obtained by using Knowledge Bases (KB) as distant supervision. However, the reliance on KB means this training setting can be hampered by the lack of or the incompleteness of the KB. To alleviate this limitation, we propose a novel setting for training FET models: FET without accessing any knowledge base. Under this setting, we propose a two-step framework to train FET models. In the first step, we automatically create pseudo data with fine-grained labels from a large unlabeled dataset. Then a neural network model is trained based on the pseudo data, either in an unsupervised way or using self-training under the weak guidance from a coarse-grained Named Entity Recognition (NER) model. Experimental results show that our method achieves competitive performance with respect to the models trained on the original KB-supervised datasets.

pdf bib
Segmenting Natural Language Sentences via Lexical Unit Analysis
Yangming Li | Lemao Liu | Shuming Shi
Findings of the Association for Computational Linguistics: EMNLP 2021

The span-based model enjoys great popularity in recent works of sequence segmentation. However, each of these methods suffers from its own defects, such as invalid predictions. In this work, we introduce a unified span-based model, lexical unit analysis (LUA), that addresses all these matters. Segmenting a lexical unit sequence involves two steps. Firstly, we embed every span by using the representations from a pretraining language model. Secondly, we define a score for every segmentation candidate and apply dynamic programming (DP) to extract the candidate with the maximum score. We have conducted extensive experiments on 3 tasks, (e.g., syntactic chunking), across 7 datasets. LUA has established new state-of-the-art performances on 6 of them. We have achieved even better results through incorporating label correlations.

pdf bib
Neural Sequence Segmentation as Determining the Leftmost Segments
Yangming Li | Lemao Liu | Kaisheng Yao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Prior methods to text segmentation are mostly at token level. Despite the adequacy, this nature limits their full potential to capture the long-term dependencies among segments. In this work, we propose a novel framework that incrementally segments natural language sentences at segment level. For every step in segmentation, it recognizes the leftmost segment of the remaining sequence. Implementations involve LSTM-minus technique to construct the phrase representations and recurrent neural networks (RNN) to model the iterations of determining the leftmost segments. We have conducted extensive experiments on syntactic chunking and Chinese part-of-speech (POS) tagging across 3 datasets, demonstrating that our methods have significantly outperformed previous all baselines and achieved new state-of-the-art results. Moreover, qualitative analysis and the study on segmenting long-length sentences verify its effectiveness in modeling long-term dependencies.

2020

pdf bib
Slot-consistent NLG for Task-oriented Dialogue Systems with Iterative Rectification Network
Yangming Li | Kaisheng Yao | Libo Qin | Wanxiang Che | Xiaolong Li | Ting Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Data-driven approaches using neural networks have achieved promising performances in natural language generation (NLG). However, neural generators are prone to make mistakes, e.g., neglecting an input slot value and generating a redundant slot value. Prior works refer this to hallucination phenomenon. In this paper, we study slot consistency for building reliable NLG systems with all slot values of input dialogue act (DA) properly generated in output sentences. We propose Iterative Rectification Network (IRN) for improving general NLG systems to produce both correct and fluent responses. It applies a bootstrapping algorithm to sample training candidates and uses reinforcement learning to incorporate discrete reward related to slot inconsistency into training. Comprehensive studies have been conducted on multiple benchmark datasets, showing that the proposed methods have significantly reduced the slot error rate (ERR) for all strong baselines. Human evaluations also have confirmed its effectiveness.

pdf bib
Handling Rare Entities for Neural Sequence Labeling
Yangming Li | Han Li | Kaisheng Yao | Xiaolong Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

One great challenge in neural sequence labeling is the data sparsity problem for rare entity words and phrases. Most of test set entities appear only few times and are even unseen in training corpus, yielding large number of out-of-vocabulary (OOV) and low-frequency (LF) entities during evaluation. In this work, we propose approaches to address this problem. For OOV entities, we introduce local context reconstruction to implicitly incorporate contextual information into their representations. For LF entities, we present delexicalized entity identification to explicitly extract their frequency-agnostic and entity-type-specific representations. Extensive experiments on multiple benchmark datasets show that our model has significantly outperformed all previous methods and achieved new start-of-the-art results. Notably, our methods surpass the model fine-tuned on pre-trained language models without external resource.

2019

pdf bib
Entity-Consistent End-to-end Task-Oriented Dialogue System with KB Retriever
Libo Qin | Yijia Liu | Wanxiang Che | Haoyang Wen | Yangming Li | Ting Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Querying the knowledge base (KB) has long been a challenge in the end-to-end task-oriented dialogue system. Previous sequence-to-sequence (Seq2Seq) dialogue generation work treats the KB query as an attention over the entire KB, without the guarantee that the generated entities are consistent with each other. In this paper, we propose a novel framework which queries the KB in two steps to improve the consistency of generated entities. In the first step, inspired by the observation that a response can usually be supported by a single KB row, we introduce a KB retrieval component which explicitly returns the most relevant KB row given a dialogue history. The retrieval result is further used to filter the irrelevant entities in a Seq2Seq response generation model to improve the consistency among the output entities. In the second step, we further perform the attention mechanism to address the most correlated KB column. Two methods are proposed to make the training feasible without labeled retrieval data, which include distant supervision and Gumbel-Softmax technique. Experiments on two publicly available task oriented dialog datasets show the effectiveness of our model by outperforming the baseline systems and producing entity-consistent responses.

pdf bib
A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
Libo Qin | Wanxiang Che | Yangming Li | Haoyang Wen | Ting Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Intent detection and slot filling are two main tasks for building a spoken language understanding (SLU) system. The two tasks are closely tied and the slots often highly depend on the intent. In this paper, we propose a novel framework for SLU to better incorporate the intent information, which further guiding the slot filling. In our framework, we adopt a joint model with Stack-Propagation which can directly use the intent information as input for slot filling, thus to capture the intent semantic knowledge. In addition, to further alleviate the error propagation, we perform the token-level intent detection for the Stack-Propagation framework. Experiments on two publicly datasets show that our model achieves the state-of-the-art performance and outperforms other previous methods by a large margin. Finally, we use the Bidirectional Encoder Representation from Transformer (BERT) model in our framework, which further boost our performance in SLU task.