Yao Zhang


2024

pdf bib
Exploring Union and Intersection of Visual Regions for Generating Questions, Answers, and Distractors
Wenjian Ding | Yao Zhang | Jun Wang | Adam Jatowt | Zhenglu Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Multiple-choice visual question answering (VQA) is to automatically choose a correct answer from a set of choices after reading an image. Existing efforts have been devoted to a separate generation of an image-related question, a correct answer, or challenge distractors. By contrast, we turn to a holistic generation and optimization of questions, answers, and distractors (QADs) in this study. This integrated generation strategy eliminates the need for human curation and guarantees information consistency. Furthermore, we first propose to put the spotlight on different image regions to diversify QADs. Accordingly, a novel framework ReBo is formulated in this paper. ReBo cyclically generates each QAD based on a recurrent multimodal encoder, and each generation is focusing on a different area of the image compared to those already concerned by the previously generated QADs. In addition to traditional VQA comparisons with state-of-the-art approaches, we also validate the capability of ReBo in generating augmented data to benefit VQA models.

pdf bib
Can We Learn Question, Answer, and Distractors All from an Image? A New Task for Multiple-choice Visual Question Answering
Wenjian Ding | Yao Zhang | Jun Wang | Adam Jatowt | Zhenglu Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multiple-choice visual question answering (MC VQA) requires an answer picked from a list of distractors, based on a question and an image. This research has attracted wide interest from the fields of visual question answering, visual question generation, and visual distractor generation. However, these fields still stay in their own territories, and how to jointly generate meaningful questions, correct answers, and challenging distractors remains unexplored. In this paper, we introduce a novel task, Visual Question-Answer-Distractors Generation (VQADG), which can bridge this research gap as well as take as a cornerstone to promote existing VQA models. Specific to the VQADG task, we present a novel framework consisting of a vision-and-language model to encode the given image and generate QADs jointly, and contrastive learning to ensure the consistency of the generated question, answer, and distractors. Empirical evaluations on the benchmark dataset validate the performance of our model in the VQADG task.

2023

pdf bib
HHS at SemEval-2023 Task 10: A Comparative Analysis of Sexism Detection Based on the RoBERTa Model
Yao Zhang | Liqing Wang
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes the methods and models applied by our team HHS in SubTask-A of SemEval-2023 Task 10 about sexism detection. In this task, we trained with the officially released data and analyzed the performance of five models, TextCNN, BERT, RoBERTa, XLNet, and Sup-SimCSE-RoBERTa. The experiments show that most of the models can achieve good results. Then, we tried data augmentation, model ensemble, dropout, and other operations on several of these models, and compared the results for analysis. In the end, the most effective approach that yielded the best results on the test set involved the following steps: enhancing the sexist data using dropout, feeding it as input to the Sup-SimCSE-RoBERTa model, and providing the raw data as input to the XLNet model. Then, combining the outputs of the two methods led to even better results. This method yielded a Macro-F1 score of 0.823 in the final evaluation phase of the SubTask-A of the competition.

pdf bib
ECOLA: Enhancing Temporal Knowledge Embeddings with Contextualized Language Representations
Zhen Han | Ruotong Liao | Jindong Gu | Yao Zhang | Zifeng Ding | Yujia Gu | Heinz Koeppl | Hinrich Schütze | Volker Tresp
Findings of the Association for Computational Linguistics: ACL 2023

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts. However, existing enhancement approaches cannot apply to temporal knowledge graphs (tKGs), which contain time-dependent event knowledge with complex temporal dynamics. Specifically, existing enhancement approaches often assume knowledge embedding is time-independent. In contrast, the entity embedding in tKG models usually evolves, which poses the challenge of aligning temporally relevant texts with entities. To this end, we propose to study enhancing temporal knowledge embedding with textual data in this paper. As an approach to this task, we propose Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations (ECOLA), which takes the temporal aspect into account and injects textual information into temporal knowledge embedding. To evaluate ECOLA, we introduce three new datasets for training and evaluating ECOLA. Extensive experiments show that ECOLA significantly enhances temporal KG embedding models with up to 287% relative improvements regarding Hits@1 on the link prediction task. The code and models are publicly available on https://github.com/mayhugotong/ECOLA.

pdf bib
Adaptive Structure Induction for Aspect-based Sentiment Analysis with Spectral Perspective
Hao Niu | Yun Xiong | Xiaosu Wang | Wenjing Yu | Yao Zhang | Zhonglei Guo
Findings of the Association for Computational Linguistics: EMNLP 2023

Recently, incorporating structure information (e.g. dependency syntactic tree) can enhance the performance of aspect-based sentiment analysis (ABSA). However, this structure information is obtained from off-the-shelf parsers, which is often sub-optimal and cumbersome. Thus, automatically learning adaptive structures is conducive to solving this problem. In this work, we concentrate on structure induction from pre-trained language models (PLMs) and throw the structure induction into a spectrum perspective to explore the impact of scale information in language representation on structure induction ability. Concretely, the main architecture of our model is composed of commonly used PLMs (e.g. RoBERTa, etc), and a simple yet effective graph structure learning (GSL) module (graph learner + GNNs). Subsequently, we plug in spectral filters with different bands respectively after the PLMs to produce filtered language representations and feed them into the GSL module to induce latent structures. We conduct extensive experiments on three public benchmarks for ABSA. The results and further analyses demonstrate that introducing this spectral approach can shorten Aspects-sentiment Distance (AsD) and be beneficial to structure induction. Even based on such a simple framework, the effects on three datasets can reach SOTA (state of the art) or near SOTA performance. Additionally, our exploration also has the potential to be generalized to other tasks or to bring inspiration to other similar domains.

pdf bib
KeFVP: Knowledge-enhanced Financial Volatility Prediction
Hao Niu | Yun Xiong | Xiaosu Wang | Wenjing Yu | Yao Zhang | Weizu Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

Financial volatility prediction is vital for indicating a company’s risk profile. Transcripts of companies’ earnings calls are important unstructured data sources to be utilized to access companies’ performance and risk profiles. However, current works ignore the role of financial metrics knowledge (such as EBIT, EPS, and ROI) in transcripts, which is crucial for understanding companies’ performance, and little consideration is given to integrating text and price information. In this work, we statistic common financial metrics and make a special dataset based on these metrics. Then, we introduce a knowledge-enhanced financial volatility prediction method (KeFVP) to inject knowledge of financial metrics into text comprehension by knowledge-enhanced adaptive pre-training (KePt) and effectively incorporating text and price information by introducing a conditional time series prediction module. We conduct extensive experiments on three real-world public datasets, and the results indicate that KeFVP is effective and outperforms all the state-of-the-art methods.

pdf bib
Well Begun is Half Done: Generator-agnostic Knowledge Pre-Selection for Knowledge-Grounded Dialogue
Lang Qin | Yao Zhang | Hongru Liang | Jun Wang | Zhenglu Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Accurate knowledge selection is critical in knowledge-grounded dialogue systems. Towards a closer look at it, we offer a novel perspective to organize existing literature, i.e., knowledge selection coupled with, after, and before generation. We focus on the third under-explored category of study, which can not only select knowledge accurately in advance, but has the advantage to reduce the learning, adjustment, and interpretation burden of subsequent response generation models, especially LLMs. We propose \tt{GATE}, a generator-agnostic knowledge selection method, to prepare knowledge for subsequent response generation models by selecting context-related knowledge among different knowledge structures and variable knowledge requirements. Experimental results demonstrate the superiority of \tt{GATE}, and indicate that knowledge selection before generation is a lightweight yet effective way to facilitate LLMs (e.g., ChatGPT) to generate more informative responses.

2022

pdf bib
Modeling Temporal-Modal Entity Graph for Procedural Multimodal Machine Comprehension
Huibin Zhang | Zhengkun Zhang | Yao Zhang | Jun Wang | Yufan Li | Ning Jiang | Xin Wei | Zhenglu Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Procedural Multimodal Documents (PMDs) organize textual instructions and corresponding images step by step. Comprehending PMDs and inducing their representations for the downstream reasoning tasks is designated as Procedural MultiModal Machine Comprehension (M3C). In this study, we approach Procedural M3C at a fine-grained level (compared with existing explorations at a document or sentence level), that is, entity. With delicate consideration, we model entity both in its temporal and cross-modal relation and propose a novel Temporal-Modal Entity Graph (TMEG). Specifically, graph structure is formulated to capture textual and visual entities and trace their temporal-modal evolution. In addition, a graph aggregation module is introduced to conduct graph encoding and reasoning. Comprehensive experiments across three Procedural M3C tasks are conducted on a traditional dataset RecipeQA and our new dataset CraftQA, which can better evaluate the generalization of TMEG.

pdf bib
Fact-Tree Reasoning for N-ary Question Answering over Knowledge Graphs
Yao Zhang | Peiyao Li | Hongru Liang | Adam Jatowt | Zhenglu Yang
Findings of the Association for Computational Linguistics: ACL 2022

Current Question Answering over Knowledge Graphs (KGQA) task mainly focuses on performing answer reasoning upon KGs with binary facts. However, it neglects the n-ary facts, which contain more than two entities. In this work, we highlight a more challenging but under-explored task: n-ary KGQA, i.e., answering n-ary facts questions upon n-ary KGs. Nevertheless, the multi-hop reasoning framework popular in binary KGQA task is not directly applicable on n-ary KGQA. We propose two feasible improvements: 1) upgrade the basic reasoning unit from entity or relation to fact, and 2) upgrade the reasoning structure from chain to tree. Therefore, we propose a novel fact-tree reasoning framework, FacTree, which integrates the above two upgrades. FacTree transforms the question into a fact tree and performs iterative fact reasoning on the fact tree to infer the correct answer. Experimental results on the n-ary KGQA dataset we constructed and two binary KGQA benchmarks demonstrate the effectiveness of FacTree compared with state-of-the-art methods.

pdf bib
Composition-based Heterogeneous Graph Multi-channel Attention Network for Multi-aspect Multi-sentiment Classification
Hao Niu | Yun Xiong | Jian Gao | Zhongchen Miao | Xiaosu Wang | Hongrun Ren | Yao Zhang | Yangyong Zhu
Proceedings of the 29th International Conference on Computational Linguistics

Aspect-based sentiment analysis (ABSA) has drawn more and more attention because of its extensive applications. However, towards the sentence carried with more than one aspect, most existing works generate an aspect-specific sentence representation for each aspect term to predict sentiment polarity, which neglects the sentiment relationship among aspect terms. Besides, most current ABSA methods focus on sentences containing only one aspect term or multiple aspect terms with the same sentiment polarity, which makes ABSA degenerate into sentence-level sentiment analysis. In this paper, to deal with this problem, we construct a heterogeneous graph to model inter-aspect relationships and aspect-context relationships simultaneously and propose a novel Composition-based Heterogeneous Graph Multi-channel Attention Network (CHGMAN) to encode the constructed heterogeneous graph. Meanwhile, we conduct extensive experiments on three datasets: MAMSATSA, Rest14, and Laptop14, experimental results show the effectiveness of our method.

2021

pdf bib
GMH: A General Multi-hop Reasoning Model for KG Completion
Yao Zhang | Hongru Liang | Adam Jatowt | Wenqiang Lei | Xin Wei | Ning Jiang | Zhenglu Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.

pdf bib
Semi-supervised Intent Discovery with Contrastive Learning
Xiang Shen | Yinge Sun | Yao Zhang | Mani Najmabadi
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

User intent discovery is a key step in developing a Natural Language Understanding (NLU) module at the core of any modern Conversational AI system. Typically, human experts review a representative sample of user input data to discover new intents, which is subjective, costly, and error-prone. In this work, we aim to assist the NLU developers by presenting a novel method for discovering new intents at scale given a corpus of utterances. Our method utilizes supervised contrastive learning to leverage information from a domain-relevant, already labeled dataset and identifies new intents in the corpus at hand using unsupervised K-means clustering. Our method outperforms the state-of-the-art by a large margin up to 2% and 13% on two benchmark datasets, measured by clustering accuracy. Furthermore, we apply our method on a large dataset from the travel domain to demonstrate its effectiveness on a real-world use case.