Yunmo Chen


2024

pdf bib
MultiMUC: Multilingual Template Filling on MUC-4
William Gantt | Shabnam Behzad | Hannah An | Yunmo Chen | Aaron White | Benjamin Van Durme | Mahsa Yarmohammadi
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce MultiMUC, the first multilingual parallel corpus for template filling, comprising translations of the classic MUC-4 template filling benchmark into five languages: Arabic, Chinese, Farsi, Korean, and Russian. We obtain automatic translations from a strong multilingual machine translation system and manually project the original English annotations into each target language. For all languages, we also provide human translations for key portions of the dev and test splits. Finally, we present baselines on MultiMUC both with state-of-the-art template filling models for MUC-4 and with ChatGPT. We release MUC-4 and the supervised baselines to facilitate further work on document-level information extraction in multilingual settings.

pdf bib
Learning to Retrieve Iteratively for In-Context Learning
Yunmo Chen | Tongfei Chen | Harsh Jhamtani | Patrick Xia | Richard Shin | Jason Eisner | Benjamin Van Durme
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training.

pdf bib
Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles
Weiting Tan | Haoran Xu | Lingfeng Shen | Shuyue Stella Li | Kenton Murray | Philipp Koehn | Benjamin Van Durme | Yunmo Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.

pdf bib
The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts
Lingfeng Shen | Weiting Tan | Sihao Chen | Yunmo Chen | Jingyu Zhang | Haoran Xu | Boyuan Zheng | Philipp Koehn | Daniel Khashabi
Findings of the Association for Computational Linguistics: ACL 2024

As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages,we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction.

pdf bib
FaithScore: Fine-grained Evaluations of Hallucinations in Large Vision-Language Models
Liqiang Jing | Ruosen Li | Yunmo Chen | Xinya Du
Findings of the Association for Computational Linguistics: EMNLP 2024

We introduce FaithScore (Faithfulness to Atomic Image Facts Score), a reference-free and fine-grained evaluation metric that measures the faithfulness of the generated free-form answers from large vision-language models (LVLMs). The FaithScore evaluation first identifies sub-sentences containing descriptive statements that need to be verified, then extracts a comprehensive list of atomic facts from these sub-sentences, and finally conducts consistency verification between fine-grained atomic facts and the input image. Meta-evaluation demonstrates that our metric highly correlates with human judgments of faithfulness. We collect two benchmark datasets (i.e. LLaVA-1k and MSCOCO-Cap) for evaluating LVLMs instruction-following hallucinations. We measure hallucinations in state-of-the-art LVLMs with FaithScore on the datasets. Results reveal that current systems are prone to generate hallucinated content unfaithful to the image, which leaves room for future improvements. We hope our metric FaithScore can help evaluate future LVLMs in terms of faithfulness and provide insightful advice for enhancing LVLMs’ faithfulness.

2023

pdf bib
Iterative Document-level Information Extraction via Imitation Learning
Yunmo Chen | William Gantt | Weiwei Gu | Tongfei Chen | Aaron White | Benjamin Van Durme
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

We present a novel iterative extraction model, IterX, for extracting complex relations, or templates, i.e., N-tuples representing a mapping from named slots to spans of text within a document. Documents may feature zero or more instances of a template of any given type, and the task of template extraction entails identifying the templates in a document and extracting each template’s slot values. Our imitation learning approach casts the problem as a Markov decision process (MDP), and relieves the need to use predefined template orders to train an extractor. It leads to state-of-the-art results on two established benchmarks – 4-ary relation extraction on SciREX and template extraction on MUC-4 – as well as a strong baseline on the new BETTER Granular task.

pdf bib
Condensing Multilingual Knowledge with Lightweight Language-Specific Modules
Haoran Xu | Weiting Tan | Shuyue Li | Yunmo Chen | Benjamin Van Durme | Philipp Koehn | Kenton Murray
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Incorporating language-specific (LS) modules or Mixture-of-Experts (MoE) are proven methods to boost performance in multilingual model performance, but the scalability of these approaches to hundreds of languages or experts tends to be hard to manage. We present Language-specific Matrix Synthesis (LMS), a novel method that addresses the issue. LMS utilizes parameter-efficient and lightweight modules, reducing the number of parameters while outperforming existing methods, e.g., +1.73 BLEU over Switch Transformer on OPUS-100 multilingual translation. Additionally, we introduce Fuse Distillation (FD) to condense multilingual knowledge from multiple LS modules into a single shared module, improving model inference and storage efficiency. Our approach demonstrates superior scalability and performance compared to state-of-the-art methods.

pdf bib
When Do Decompositions Help for Machine Reading?
Kangda Wei | Dawn Lawrie | Benjamin Van Durme | Yunmo Chen | Orion Weller
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Answering complex questions often requires multi-step reasoning in order to obtain the final answer. Most research into decompositions of complex questions involves open-domain systems, which have shown success in using these decompositions for improved retrieval. In the machine reading setting, however, work to understand when decompositions are helpful is understudied. We conduct experiments on decompositions in machine reading to unify recent work in this space, using a range of models and datasets. We find that decompositions can be helpful in zero or limited-data settings, giving several points of improvement in exact match. However, we also show that when models are given access to around a few hundred or more examples, decompositions are not helpful (and can actually be detrimental). Thus, our analysis implies that models can learn decompositions implicitly even with limited data.

pdf bib
A Unified View of Evaluation Metrics for Structured Prediction
Yunmo Chen | William Gantt | Tongfei Chen | Aaron White | Benjamin Van Durme
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present a conceptual framework that unifies a variety of evaluation metrics for different structured prediction tasks (e.g. event and relation extraction, syntactic and semantic parsing). Our framework requires representing the outputs of these tasks as objects of certain data types, and derives metrics through matching of common substructures, possibly followed by normalization. We demonstrate how commonly used metrics for a number of tasks can be succinctly expressed by this framework, and show that new metrics can be naturally derived in a bottom-up way based on an output structure. We release a library that enables this derivation to create new metrics. Finally, we consider how specific characteristics of tasks motivate metric design decisions, and suggest possible modifications to existing metrics in line with those motivations.

pdf bib
On Event Individuation for Document-Level Information Extraction
William Gantt | Reno Kriz | Yunmo Chen | Siddharth Vashishtha | Aaron White
Findings of the Association for Computational Linguistics: EMNLP 2023

As information extraction (IE) systems have grown more adept at processing whole documents, the classic task of *template filling* has seen renewed interest as a benchmark for document-level IE. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of *event individuation* — the problem of distinguishing distinct events — about which even human experts disagree. Through an annotation study and error analysis, we show that this raises concerns about the usefulness of template filling metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.

2022

pdf bib
An Empirical Study on Finding Spans
Weiwei Gu | Boyuan Zheng | Yunmo Chen | Tongfei Chen | Benjamin Van Durme
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present an empirical study on methods for span finding, the selection of consecutive tokens in text for some downstream tasks. We focus on approaches that can be employed in training end-to-end information extraction systems, and find there is no definitive solution without considering task properties, and provide our observations to help with future design choices: 1) a tagging approach often yields higher precision while span enumeration and boundary prediction provide higher recall; 2) span type information can benefit a boundary prediction approach; 3) additional contextualization does not help span finding in most cases.

2021

pdf bib
LOME: Large Ontology Multilingual Extraction
Patrick Xia | Guanghui Qin | Siddharth Vashishtha | Yunmo Chen | Tongfei Chen | Chandler May | Craig Harman | Kyle Rawlins | Aaron Steven White | Benjamin Van Durme
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.

pdf bib
Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
Mahsa Yarmohammadi | Shijie Wu | Marc Marone | Haoran Xu | Seth Ebner | Guanghui Qin | Yunmo Chen | Jialiang Guo | Craig Harman | Kenton Murray | Aaron Steven White | Mark Dredze | Benjamin Van Durme
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.

2020

pdf bib
Hierarchical Entity Typing via Multi-level Learning to Rank
Tongfei Chen | Yunmo Chen | Benjamin Van Durme
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose a novel method for hierarchical entity classification that embraces ontological structure at both training and during prediction. At training, our novel multi-level learning-to-rank loss compares positive types against negative siblings according to the type tree. During prediction, we define a coarse-to-fine decoder that restricts viable candidates at each level of the ontology based on already predicted parent type(s). Our approach significantly outperform prior work on strict accuracy, demonstrating the effectiveness of our method.

pdf bib
Joint Modeling of Arguments for Event Understanding
Yunmo Chen | Tongfei Chen | Benjamin Van Durme
Proceedings of the First Workshop on Computational Approaches to Discourse

We recognize the task of event argument linking in documents as similar to that of intent slot resolution in dialogue, providing a Transformer-based model that extends from a recently proposed solution to resolve references to slots. The approach allows for joint consideration of argument candidates given a detected event, which we illustrate leads to state-of-the-art performance in multi-sentence argument linking.

pdf bib
Reading the Manual: Event Extraction as Definition Comprehension
Yunmo Chen | Tongfei Chen | Seth Ebner | Aaron Steven White | Benjamin Van Durme
Proceedings of the Fourth Workshop on Structured Prediction for NLP

We ask whether text understanding has progressed to where we may extract event information through incremental refinement of bleached statements derived from annotation manuals. Such a capability would allow for the trivial construction and extension of an extraction framework by intended end-users through declarations such as, “Some person was born in some location at some time.” We introduce an example of a model that employs such statements, with experiments illustrating we can extract events under closed ontologies and generalize to unseen event types simply by reading new definitions.