Jianxin Li


2024

pdf bib
Few-Shot Multimodal Named Entity Recognition Based on Mutlimodal Causal Intervention Graph
Feihong Lu | Xiaocui Yang | Qian Li | Qingyun Sun | Ke Jiang | Cheng Ji | Jianxin Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal Named Entity Recognition (MNER) models typically require a significant volume of labeled data for effective training to extract relations between entities. In real-world scenarios, we frequently encounter unseen relation types. Nevertheless, existing methods are predominantly tailored for complete datasets and are not equipped to handle these new relation types. In this paper, we introduce the Few-shot Multimodal Named Entity Recognition (FMNER) task to address these novel relation types. FMNER trains in the source domain (seen types) and tests in the target domain (unseen types) with different distributions. Due to limited available resources for sampling, each sampling instance yields different content, resulting in data bias and alignment problems of multimodal units (image patches and words). To alleviate the above challenge, we propose a novel Multimodal causal Intervention graphs (MOUSING) model for FMNER. Specifically, we begin by constructing a multimodal graph that incorporates fine-grained information from multiple modalities. Subsequently, we introduce the Multimodal Causal Intervention Strategy to update the multimodal graph. It aims to decrease spurious correlations and emphasize accurate correlations between multimodal units, resulting in effectively aligned multimodal representations. Extensive experiments on two multimodal named entity recognition datasets demonstrate the superior performance of our model in the few-shot setting.

2023

pdf bib
Path Spuriousness-aware Reinforcement Learning for Multi-Hop Knowledge Graph Reasoning
Chunyang Jiang | Tianchen Zhu | Haoyi Zhou | Chang Liu | Ting Deng | Chunming Hu | Jianxin Li
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Multi-hop reasoning, a prevalent approach for query answering, aims at inferring new facts along reasonable paths over a knowledge graph. Reinforcement learning methods can be adopted by formulating the problem into a Markov decision process. However, common suffering within RL-based reasoning models is that the agent can be biased to spurious paths which coincidentally lead to the correct answer with poor explanation. In this work, we take a deep dive into this phenomenon and define a metric named Path Spuriousness (PS), to quantitatively estimate to what extent a path is spurious. Guided by the definition of PS, we design a model with a new reward that considers both answer accuracy and path reasonableness. We test our method on four datasets and experiments reveal that our method considerably enhances the agent’s capacity to prevent spurious paths while keeping comparable to state-of-the-art performance.

pdf bib
DisCo: Distilled Student Models Co-training for Semi-supervised Text Mining
Weifeng Jiang | Qianren Mao | Chenghua Lin | Jianxin Li | Ting Deng | Weiyi Yang | Zheng Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many text mining models are constructed by fine-tuning a large deep pre-trained language model (PLM) in downstream tasks. However, a significant challenge that arises nowadays is how to maintain performance when we use a lightweight model with limited labeled samples. We present DisCo, a semi-supervised learning (SSL) framework for fine-tuning a cohort of small student models generated from a large PLM using knowledge distillation. Our key insight is to share complementary knowledge among distilled student cohorts to promote their SSL effectiveness. DisCo employs a novel co-training technique to optimize a cohort of multiple small student models by promoting knowledge sharing among students under diversified views: model views produced by different distillation strategies and data views produced by various input augmentations. We evaluate DisCo on both semi-supervised text classification and extractive summarization tasks. Experimental results show that DisCo can produce student models that are 7.6× smaller and 4.8 × faster in inference than the baseline PLMs while maintaining comparable performance. We also show that DisCo-generated student models outperform the similar-sized models elaborately tuned in distinct tasks.

pdf bib
Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction
Qian Li | Shu Guo | Cheng Ji | Xutan Peng | Shiyao Cui | Jianxin Li | Lihong Wang
Findings of the Association for Computational Linguistics: ACL 2023

Multi-Modal Relation Extraction (MMRE) aims at identifying the relation between two entities in texts that contain visual clues. Rich visual content is valuable for the MMRE task, but existing works cannot well model finer associations among different modalities, failing to capture the truly helpful visual information and thus limiting relation extraction performance. In this paper, we propose a novel MMRE framework to better capture the deeper correlations of text, entity pair, and image/objects, so as to mine more helpful information for the task, termed as DGF-PT. We first propose a prompt-based autoregressive encoder, which builds the associations of intra-modal and inter-modal features related to the task, respectively by entity-oriented and object-oriented prefixes. To better integrate helpful visual information, we design a dual-gated fusion module to distinguish the importance of image/objects and further enrich text representations. In addition, a generative decoder is introduced with entity type restriction on relations, better filtering out candidates. Extensive experiments conducted on the benchmark dataset show that our approach achieves excellent performance compared to strong competitors, even in the few-shot situation.

pdf bib
Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment
Qian Li | Cheng Ji | Shu Guo | Zhaoji Liang | Lihong Wang | Jianxin Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-Modal Entity Alignment (MMEA) is a critical task that aims to identify equivalent entity pairs across multi-modal knowledge graphs (MMKGs). However, this task faces challenges due to the presence of different types of information, including neighboring entities, multi-modal attributes, and entity types. Directly incorporating the above information (e.g., concatenation or attention) can lead to an unaligned information space. To address these challenges, we propose a novel MMEA transformer, called Meaformer, that hierarchically introduces neighbor features, multi-modal attributes, and entity types to enhance the alignment task. Taking advantage of the transformer’s ability to better integrate multiple information, we design a hierarchical modifiable self-attention block in a transformer encoder to preserve the unique semantics of different information. Furthermore, we design two entity-type prefix injection methods to redintegrate entity-type information using type prefixes, which help to restrict the global information of entities not present in the MMKGs.

pdf bib
LATENTLOGIC: Learning Logic Rules in Latent Space over Knowledge Graphs
Junnan Liu | Qianren Mao | Chenghua Lin | Yangqiu Song | Jianxin Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Learning logic rules for knowledge graph reasoning is essential as such rules provide interpretable explanations for reasoning and can be generalized to different domains. However, existing methods often face challenges such as searching in a vast search space (e.g., enumeration of relational paths or multiplication of high-dimensional matrices) and inefficient optimization (e.g., techniques based on reinforcement learning or EM algorithm). To address these limitations, this paper proposes a novel framework called LatentLogic to efficiently mine logic rules by controllable generation in the latent space. Specifically, to map the discrete relational paths into the latent space, we leverage a pre-trained VAE and employ a discriminator to establish an energy-based distribution. Additionally, we incorporate a sampler based on ordinary differential equations, enabling the efficient generation of logic rules in our approach. Extensive experiments on benchmark datasets demonstrate the effectiveness and efficiency of our proposed method.

pdf bib
Bipartite Graph Pre-training for Unsupervised Extractive Summarization with Graph Convolutional Auto-Encoders
Qianren Mao | Shaobo Zhao | Jiarui Li | Xiaolei Gu | Shizhu He | Bo Li | Jianxin Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Pre-trained sentence representations are crucial for identifying significant sentences in unsupervised document extractive summarization. However, the traditional two-step paradigm of pre-training and sentence-ranking, creates a gap due to differing optimization objectives. To address this issue, we argue that utilizing pre-trained embeddings derived from a process specifically designed to optimize informative and distinctive sentence representations helps rank significant sentences. To do so, we propose a novel graph pre-training auto-encoder to obtain sentence embeddings by explicitly modelling intra-sentential distinctive features and inter-sentential cohesive features through sentence-word bipartite graphs. These fine-tuned sentence embeddings are then utilized in a graph-based ranking algorithm for unsupervised summarization. Our method is a plug-and-play pre-trained model that produces predominant performance for unsupervised summarization frameworks by providing summary-worthy sentence representations. It surpasses heavy BERT- or RoBERTa-based sentence representations in downstream tasks.

2022

pdf bib
Noise-injected Consistency Training and Entropy-constrained Pseudo Labeling for Semi-supervised Extractive Summarization
Yiming Wang | Qianren Mao | Junnan Liu | Weifeng Jiang | Hongdong Zhu | Jianxin Li
Proceedings of the 29th International Conference on Computational Linguistics

Labeling large amounts of extractive summarization data is often prohibitive expensive due to time, financial, and expertise constraints, which poses great challenges to incorporating summarization system in practical applications. This limitation can be overcome by semi-supervised approaches: consistency-training and pseudo-labeling to make full use of unlabeled data. Researches on the two, however, are conducted independently, and very few works try to connect them. In this paper, we first use the noise-injected consistency training paradigm to regularize model predictions. Subsequently, we propose a novel entropy-constrained pseudo labeling strategy to obtain high-confidence labels from unlabeled predictions, which can obtain high-confidence labels from unlabeled predictions by comparing the entropy of supervised and unsupervised predictions. By combining consistency training and pseudo-labeling, this framework enforce a low-density separation between classes, which decently improves the performance of supervised learning over an insufficient labeled extractive summarization dataset.

pdf bib
THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption
Tianyu Chen | Hangbo Bao | Shaohan Huang | Li Dong | Binxing Jiao | Daxin Jiang | Haoyi Zhou | Jianxin Li | Furu Wei
Findings of the Association for Computational Linguistics: ACL 2022

As more and more pre-trained language models adopt on-cloud deployment, the privacy issues grow quickly, mainly for the exposure of plain-text user data (e.g., search history, medical record, bank account). Privacy-preserving inference of transformer models is on the demand of cloud service users. To protect privacy, it is an attractive choice to compute only with ciphertext in homomorphic encryption (HE). However, enabling pre-trained models inference on ciphertext data is difficult due to the complex computations in transformer blocks, which are not supported by current HE tools yet. In this work, we introduce THE-X, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models developed by popular frameworks. THE-X proposes a workflow to deal with complex computation in transformer networks, including all the non-polynomial functions like GELU, softmax, and LayerNorm. Experiments reveal our proposed THE-X can enable transformer inference on encrypted data for different downstream tasks, all with negligible performance drop but enjoying the theory-guaranteed privacy-preserving advantage.

2021

pdf bib
Pseudo-Label Guided Unsupervised Domain Adaptation of Contextual Embeddings
Tianyu Chen | Shaohan Huang | Furu Wei | Jianxin Li
Proceedings of the Second Workshop on Domain Adaptation for NLP

Contextual embedding models such as BERT can be easily fine-tuned on labeled samples to create a state-of-the-art model for many downstream tasks. However, the fine-tuned BERT model suffers considerably from unlabeled data when applied to a different domain. In unsupervised domain adaptation, we aim to train a model that works well on a target domain when provided with labeled source samples and unlabeled target samples. In this paper, we propose a pseudo-label guided method for unsupervised domain adaptation. Two models are fine-tuned on labeled source samples as pseudo labeling models. To learn representations for the target domain, one of those models is adapted by masked language modeling from the target domain. Then those models are used to assign pseudo-labels to target samples. We train the final model with those samples. We evaluate our method on named entity segmentation and sentiment analysis tasks. These experiments show that our approach outperforms baseline methods.

pdf bib
HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization
Zhongfen Deng | Hao Peng | Dongxiao He | Jianxin Li | Philip Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The current state-of-the-art model HiAGM for hierarchical text classification has two limitations. First, it correlates each text sample with all labels in the dataset which contains irrelevant information. Second, it does not consider any statistical constraint on the label representations learned by the structure encoder, while constraints for representation learning are proved to be helpful in previous work. In this paper, we propose HTCInfoMax to address these issues by introducing information maximization which includes two modules: text-label mutual information maximization and label prior matching. The first module can model the interaction between each text sample and its ground truth labels explicitly which filters out irrelevant information. The second one encourages the structure encoder to learn better representations with desired characteristics for all labels which can better handle label imbalance in hierarchical text classification. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed HTCInfoMax.

2020

pdf bib
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation
Zhongfen Deng | Hao Peng | Congying Xia | Jianxin Li | Lifang He | Philip Yu
Proceedings of the 28th International Conference on Computational Linguistics

Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simple text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.