Jing Ma


2024

pdf bib
AMR-Evol: Adaptive Modular Response Evolution Elicits Better Knowledge Distillation for Large Language Models in Code Generation
Ziyang Luo | Xin Li | Hongzhan Lin | Jing Ma | Lidong Bing
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The impressive performance of proprietary LLMs like GPT4 in code generation has led to a trend to replicate these capabilities in open-source models through knowledge distillation (e.g. Code Evol-Instruct). However, these efforts often neglect the crucial aspect of response quality, relying heavily on teacher models for direct response distillation. This paradigm, especially for complex instructions, can degrade the quality of synthesized data, compromising the knowledge distillation process. To this end, our study introduces the Adaptive Modular Response Evolution (AMR-Evol) framework, which employs a two-stage process to refine response distillation. The first stage, modular decomposition, breaks down the direct response into more manageable sub-modules. The second stage, adaptive response evolution, automatically evolves the response with the related function modules. Our experiments with three popular code benchmarks—HumanEval, MBPP, and EvalPlus—attests to the superiority of the AMR-Evol framework over baseline response distillation methods. By comparing with the open-source Code LLMs trained on a similar scale of data, we observed performance enhancements: more than +3.0 points on HumanEval-Plus and +1.0 points on MBPP-Plus, which underscores the effectiveness of our framework. Our codes are available at https://github.com/ChiYeungLaw/AMR-Evol.

pdf bib
Towards Low-Resource Harmful Meme Detection with LMM Agents
Jianzhao Huang | Hongzhan Lin | Liu Ziyan | Ziyang Luo | Guang Chen | Jing Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The proliferation of Internet memes in the age of social media necessitates effective identification of harmful ones. Due to the dynamic nature of memes, existing data-driven models may struggle in low-resource scenarios where only a few labeled examples are available. In this paper, we propose an agency-driven framework for low-resource harmful meme detection, employing both outward and inward analysis with few-shot annotated samples. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first retrieve relative memes with annotations to leverage label information as auxiliary signals for the LMM agent. Then, we elicit knowledge-revising behavior within the LMM agent to derive well-generalized insights into meme harmfulness. By combining these strategies, our approach enables dialectical reasoning over intricate and implicit harm-indicative patterns. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the low-resource harmful meme detection task.

pdf bib
Reinforcement Tuning for Detecting Stances and Debunking Rumors Jointly with Large Language Models
Ruichao Yang | Wei Gao | Jing Ma | Hongzhan Lin | Bo Wang
Findings of the Association for Computational Linguistics: ACL 2024

Learning multi-task models for jointly detecting stance and verifying rumors poses challenges due to the need for training data of stance at post level and rumor veracity at claim level, which are difficult to obtain. To address this issue, we leverage large language models (LLMs) as the foundation annotators for the joint stance detection (SD) and rumor verification (RV) tasks, dubbed as JSDRV. We introduce a novel reinforcement tuning framework to enhance the joint predictive capabilities of LLM-based SD and RV components. Specifically, we devise a policy for selecting LLM-annotated data at the two levels, employing a hybrid reward mechanism to choose high-quality labels for effective LLM fine-tuning on both tasks. Results demonstrate that JSDRV improves the capabilities of LLMs in the joint tasks, not only outperforming state-of-the-art methods but also generalizing to non-LLMs accommodated as task models.

pdf bib
MMCode: Benchmarking Multimodal Large Language Models for Code Generation with Visually Rich Programming Problems
Kaixin Li | Yuchen Tian | Qisheng Hu | Ziyang Luo | Zhiyong Huang | Jing Ma
Findings of the Association for Computational Linguistics: EMNLP 2024

Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available.

pdf bib
Decoding Ableism in Large Language Models: An Intersectional Approach
Rong Li | Ashwini Kamaraj | Jing Ma | Sarah Ebling
Proceedings of the Third Workshop on NLP for Positive Impact

With the pervasive use of large language models (LLMs) across various domains, addressing the inherent ableist biases within these models requires more attention and resolution. This paper examines ableism in three LLMs (GPT-3.5, GPT-4, and Llama 3) by analyzing the intersection of disability with two additional social categories: gender and social class. Utilizing two task-specific prompts, we generated and analyzed text outputs with two metrics, VADER and regard, to evaluate sentiment and social perception biases within the responses. Our results indicate a marked improvement in bias mitigation from GPT-3.5 to GPT-4, with the latter demonstrating more positive sentiments overall, while Llama 3 showed comparatively weaker performance. Additionally, our findings underscore the complexity of intersectional biases: These biases are shaped by the combined effects of disability, gender, and class, which alter the expression and perception of ableism in LLM outputs. This research highlights the necessity for more nuanced and inclusive bias mitigation strategies in AI development, contributing to the ongoing dialogue on ethical AI practices.

pdf bib
CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
Zixin Chen | Hongzhan Lin | Ziyang Luo | Mingfei Cheng | Jing Ma | Guang Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.

2023

pdf bib
KAPALM: Knowledge grAPh enhAnced Language Models for Fake News Detection
Jing Ma | Chen Chen | Chunyan Hou | Xiaojie Yuan
Findings of the Association for Computational Linguistics: EMNLP 2023

Social media has not only facilitated news consumption, but also led to the wide spread of fake news. Because news articles in social media is usually condensed and full of knowledge entities, existing methods of fake news detection use external entity knowledge. However, majority of these methods focus on news entity information and ignore the structured knowledge among news entities. To address this issue, in this work, we propose a Knowledge grAPh enhAnced Language Model (KAPALM) which is a novel model that fuses coarse- and fine-grained representations of entity knowledge from Knowledge Graphs (KGs). Firstly, we identify entities in news content and link them to entities in KGs. Then, a subgraph of KGs is extracted to provide structured knowledge of entities in KGs and fed into a graph neural network to obtain the coarse-grained knowledge representation. This subgraph is pruned to provide fine-grained knowledge and fed into the attentive graph and graph pooling layer. Finally, we integrate the coarse- and fine-grained entity knowledge representations with the textual representation for fake news detection. The experimental results on two benchmark datasets show that our method is superior to state-of-the-art baselines. In addition, it is competitive in the few-shot scenario.

pdf bib
Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning Distilled from Large Language Models
Hongzhan Lin | Ziyang Luo | Jing Ma | Long Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

The age of social media is rife with memes. Understanding and detecting harmful memes pose a significant challenge due to their implicit meaning that is not explicitly conveyed through the surface text and image. However, existing harmful meme detection approaches only recognize superficial harm-indicative signals in an end-to-end classification manner but ignore in-depth cognition of the meme text and image. In this paper, we attempt to detect harmful memes based on advanced reasoning over the interplay of multimodal information in memes. Inspired by the success of Large Language Models (LLMs) on complex reasoning, we first conduct abductive reasoning with LLMs. Then we propose a novel generative framework to learn reasonable thoughts from LLMs for better multimodal fusion and lightweight fine-tuning, which consists of two training stages: 1) Distill multimodal reasoning knowledge from LLMs; and 2) Fine-tune the generative framework to infer harmfulness. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the harmful meme detection task.

pdf bib
WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming Sentences with Contextualized Social Wisdom
Ruichao Yang | Wei Gao | Jing Ma | Hongzhan Lin | Zhiwei Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.

2022

pdf bib
DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks
Ziyang Luo | Yadong Xi | Jing Ma | Zhiwei Yang | Xiaoxi Mao | Changjie Fan | Rongsheng Zhang
Findings of the Association for Computational Linguistics: NAACL 2022

Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model DecBERT and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our DecBERT model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and DecBERT w/ PE achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources.

pdf bib
Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning
Hongzhan Lin | Jing Ma | Liangliang Chen | Zhiwei Yang | Mingfei Cheng | Chen Guang
Findings of the Association for Computational Linguistics: NAACL 2022

Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday’s news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in minority languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

pdf bib
Conditioned Masked Language and Image Modeling for Image-Text Dense Retrieval
Ziyang Luo | Yadong Xi | Rongsheng Zhang | GongZheng Li | Zeng Zhao | Jing Ma
Findings of the Association for Computational Linguistics: EMNLP 2022

Image-text retrieval is a fundamental cross-modal task that takes image/text as a query to retrieve relevant data of another type. The large-scale two-stream pre-trained models like CLIP have achieved tremendous success in this area. They embed the images and texts into instance representations with two separate encoders, aligning them on the instance-level with contrastive learning. Beyond this, the following works adopt the fine-grained token-level interaction (Masked Language and Image Modeling) to boost performance further. However, the vanilla token-level objectives are not designed to aggregate the image-text alignment information into the instance representations, but the token representations, causing a gap between pre-training and application. To address this issue, we carefully design two novel conditioned token-level pre-training objectives, Conditioned Masked Language and Image Modeling (ConMLM and ConMIM), forcing models to aggregate the token-level alignment information into the instance representations. Combing with the instance-level contrastive learning, we propose our cross-modal dense retrieval framework, Conditioned Language-Image Pre-training (ConLIP). Experimental results on two popular cross-modal retrieval benchmarks (MSCOCO and Flickr30k) reveal the effectiveness of our methods.

pdf bib
A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
Zhiwei Yang | Jing Ma | Hechang Chen | Hongzhan Lin | Ziyang Luo | Yi Chang
Proceedings of the 29th International Conference on Computational Linguistics

Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which is publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art detection baselines and generates high-quality explanations from diverse evaluation perspectives.

2021

pdf bib
HiTRANS: A Hierarchical Transformer Network for Nested Named Entity Recognition
Zhiwei Yang | Jing Ma | Hechang Chen | Yunke Zhang | Yi Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.

pdf bib
Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks
Hongzhan Lin | Jing Ma | Mingfei Cheng | Zhiwei Yang | Liangliang Chen | Guang Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Rumors are rampant in the era of social media. Conversation structures provide valuable clues to differentiate between real and fake claims. However, existing rumor detection methods are either limited to the strict relation of user responses or oversimplify the conversation structure. In this study, to substantially reinforces the interaction of user opinions while alleviating the negative impact imposed by irrelevant posts, we first represent the conversation thread as an undirected interaction graph. We then present a Claim-guided Hierarchical Graph Attention Network for rumor classification, which enhances the representation learning for responsive posts considering the entire social contexts and attends over the posts that can semantically infer the target claim. Extensive experiments on three Twitter datasets demonstrate that our rumor detection method achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

2020

pdf bib
Debunking Rumors on Twitter with Tree Transformer
Jing Ma | Wei Gao
Proceedings of the 28th International Conference on Computational Linguistics

Rumors are manufactured with no respect for accuracy, but can circulate quickly and widely by “word-of-post” through social media conversations. Conversation tree encodes important information indicative of the credibility of rumor. Existing conversation-based techniques for rumor detection either just strictly follow tree edges or treat all the posts fully-connected during feature learning. In this paper, we propose a novel detection model based on tree transformer to better utilize user interactions in the dialogue where post-level self-attention plays the key role for aggregating the intra-/inter-subtree stances. Experimental results on the TWITTER and PHEME datasets show that the proposed approach consistently improves rumor detection performance.

pdf bib
NUAA-QMUL at SemEval-2020 Task 8: Utilizing BERT and DenseNet for Internet Meme Emotion Analysis
Xiaoyu Guo | Jing Ma | Arkaitz Zubiaga
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.

pdf bib
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang | Yang Deng | Jing Ma | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.

2019

pdf bib
Sentence-Level Evidence Embedding for Claim Verification with Hierarchical Attention Networks
Jing Ma | Wei Gao | Shafiq Joty | Kam-Fai Wong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Claim verification is generally a task of verifying the veracity of a given claim, which is critical to many downstream applications. It is cumbersome and inefficient for human fact-checkers to find consistent pieces of evidence, from which solid verdict could be inferred against the claim. In this paper, we propose a novel end-to-end hierarchical attention network focusing on learning to represent coherent evidence as well as their semantic relatedness with the claim. Our model consists of three main components: 1) A coherence-based attention layer embeds coherent evidence considering the claim and sentences from relevant articles; 2) An entailment-based attention layer attends on sentences that can semantically infer the claim on top of the first attention; and 3) An output layer predicts the verdict based on the embedded evidence. Experimental results on three public benchmark datasets show that our proposed model outperforms a set of state-of-the-art baselines.

2018

pdf bib
Rumor Detection on Twitter with Tree-structured Recursive Neural Networks
Jing Ma | Wei Gao | Kam-Fai Wong
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic rumor detection is technically very challenging. In this work, we try to learn discriminative features from tweets content by following their non-sequential propagation structure and generate more powerful representations for identifying different type of rumors. We propose two recursive neural models based on a bottom-up and a top-down tree-structured neural networks for rumor representation learning and classification, which naturally conform to the propagation layout of tweets. Results on two public Twitter datasets demonstrate that our recursive neural models 1) achieve much better performance than state-of-the-art approaches; 2) demonstrate superior capacity on detecting rumors at very early stage.

2017

pdf bib
EICA Team at SemEval-2017 Task 3: Semantic and Metadata-based Features for Community Question Answering
Yufei Xie | Maoquan Wang | Jing Ma | Jian Jiang | Zhao Lu
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

We describe our system for participating in SemEval-2017 Task 3 on Community Question Answering. Our approach relies on combining a rich set of various types of features: semantic and metadata. The most important group turned out to be the metadata feature and the semantic vectors trained on QatarLiving data. In the main Subtask C, our primary submission was ranked fourth, with a MAP of 13.48 and accuracy of 97.08. In Subtask A, our primary submission get into the top 50%.

pdf bib
Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning
Jing Ma | Wei Gao | Kam-Fai Wong
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-of-the-art rumor detection models.

2015

pdf bib
UIR-PKU: Twitter-OpinMiner System for Sentiment Analysis in Twitter at SemEval 2015
Xu Han | Binyang Li | Jing Ma | Yuxiao Zhang | Gaoyan Ou | Tengjiao Wang | Kam-fai Wong
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)