The quality of the text-to-music models has reached new heights due to recent advancements in diffusion models. The controllability of various musical aspects, however, has barely been explored. In this paper, we propose Mustango: a music-domain-knowledge-inspired text-to-music system based on diffusion. Mustango aims to control the generated music, not only with general text captions, but with more rich captions that can include specific instructions related to chords, beats, tempo, and key. At the core of Mustango is MuNet, a Music-Domain-Knowledge-Informed UNet guidance module that steers the generated music to include the music-specific conditions, which we predict from the text prompt, as well as the general text embedding, during the reverse diffusion process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models such as MusicGen and AudioLDM2.
Domain shift is a big challenge in NLP. Many approaches, thus, resort to learning domain-invariant features to mitigate the hurdles of domain shift during inference. Such methods, however, inexorably fail to leverage the domain-specific nuances relevant to the task at hand. To avoid such drawbacks, domain counterfactual generation has recently been proposed that aims to transform a text from the source domain to a given target domain. To achieve this, the existing method uses a frequency-based approach to identify and mask the source-domain-specific tokens in a text. A pretrained LM is then prompted to fill the masks with target-domain-specific tokens. We, however, have observed that, due to limitations of the available data, such a frequency-based method may either miss some domain-token associations or lead to some spurious domain-token associations. To this end, we additionally employ attention norm-based scores to identify additional token-domain associations from a domain classifier. To minimize spurious associations, we also devise an iterative unmasking heuristic that unmasks the masked tokens to minimize the confidence of a domain classifier in the source domain. Our experiments empirically show that the counterfactual samples sourced from our masked text lead to improved domain transfer across various classification tasks. The proposed approach outperforms the baselines on 10 out of 12 domain-counterfactual classification settings with an average of 1.7% improvement in accuracy metric.
Visual question answering (VQA) is the task of answering questions about an image. The task assumes an understanding of both the image and the question to provide a natural language answer. VQA has gained popularity in recent years due to its potential applications in a wide range of fields, including robotics, education, and healthcare. In this paper, we focus on knowledge-augmented VQA, where answering the question requires commonsense knowledge, world knowledge, and reasoning about ideas and concepts not present in the image. We propose a multimodal framework that uses language guidance (LG) in the form of rationales, image captions, scene graphs, etc to answer questions more accurately. We benchmark our method on the multi-choice question-answering task of the A-OKVQA, Science-QA, VSR, and IconQA datasets using CLIP and BLIP models. We show that the use of language guidance is a simple but powerful and effective strategy for visual question answering. Our language guidance improves the performance of CLIP by 7.6% and BLIP-2 by 4.8% in the challenging A-OKVQA dataset. We also observe consistent improvement in performance on the Science-QA, VSR, and IconQA datasets when using the proposed language guidances. The implementation of LG-VQA is publicly available at https://github.com/declare-lab/LG-VQA.
Semi-parametric models exhibit the properties of both parametric and non-parametric modeling and have been shown to be effective in the next-word prediction language modeling task. However, there is a lack of studies on the text-discriminating properties of such models. We propose an inference-phase approach—k-Nearest Neighbor Classification Model (kNN-CM)—that enhances the capacity of a pre-trained parametric text classifier by incorporating a simple neighborhood search through the representation space of (memorized) training samples. The final class prediction of kNN-CM is based on the convex combination of probabilities obtained from kNN search and prediction of the classifier. Our experiments show consistent performance improvements on eight SuperGLUE tasks, three adversarial natural language inference (ANLI) datasets, 11 question-answering (QA) datasets, and two sentiment classification datasets.
This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener’s emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning.
We propose a simple refactoring of multi-choice question answering (MCQA) tasks as a series of binary classifications. The MCQA task is generally performed by scoring each (question, answer) pair normalized over all the pairs, and then selecting the answer from the pair that yield the highest score. For n answer choices, this is equivalent to an n-class classification setup where only one class (true answer) is correct. We instead show that classifying (question, true answer) as positive instances and (question, false answer) as negative instances is significantly more effective across various models and datasets. We show the efficacy of our proposed approach in different tasks – abductive reasoning, commonsense question answering, science question answering, and sentence completion. Our DeBERTa binary classification model reaches the top or close to the top performance on public leaderboards for these tasks. The source code of the proposed approach is available at https://github.com/declare-lab/TEAM.
Interpretability is an important aspect of the trustworthiness of a model’s predictions. Transformer’s predictions are widely explained by the attention weights, i.e., a probability distribution generated at its self-attention unit (head). Current empirical studies provide shreds of evidence that attention weights are not explanations by proving that they are not unique. A recent study showed theoretical justifications to this observation by proving the non-identifiability of attention weights. For a given input to a head and its output, if the attention weights generated in it are unique, we call the weights identifiable. In this work, we provide deeper theoretical analysis and empirical observations on the identifiability of attention weights. Ignored in the previous works, we find the attention weights are more identifiable than we currently perceive by uncovering the hidden role of the key vector. However, the weights are still prone to be non-unique attentions that make them unfit for interpretation. To tackle this issue, we provide a variant of the encoder layer that decouples the relationship between key and value vector and provides identifiable weights up to the desired length of the input. We prove the applicability of such variations by providing empirical justifications on varied text classification tasks. The implementations are available at https://github.com/declare-lab/identifiable-transformers.
Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events are often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK — a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of ‘past’ and ‘future’ and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction. The implementation of this work is available at: https://github.com/declare-lab/sentence-ordering.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER – a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://github.com/declare-lab/CIDER.
Cross-domain sentiment analysis has received significant attention in recent years, prompted by the need to combat the domain gap between different applications that make use of sentiment analysis. In this paper, we take a novel perspective on this task by exploring the role of external commonsense knowledge. We introduce a new framework, KinGDOM, which utilizes the ConceptNet knowledge graph to enrich the semantics of a document by providing both domain-specific and domain-general background concepts. These concepts are learned by training a graph convolutional autoencoder that leverages inter-domain concepts in a domain-invariant manner. Conditioning a popular domain-adversarial baseline method with these learned concepts helps improve its performance over state-of-the-art approaches, demonstrating the efficacy of our proposed framework.
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure, where all the emotions are treated uniformly. We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of these polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations. The implementation of MIME is publicly available at https://github.com/declare-lab/MIME.
In this paper, we address the task of utterance level emotion recognition in conversations using commonsense knowledge. We propose COSMIC, a new framework that incorporates different elements of commonsense such as mental states, events, and causal relations, and build upon them to learn interactions between interlocutors participating in a conversation. Current state-of-theart methods often encounter difficulties in context propagation, emotion shift detection, and differentiating between related emotion classes. By learning distinct commonsense representations, COSMIC addresses these challenges and achieves new state-of-the-art results for emotion recognition on four different benchmark conversational datasets. Our code is available at https://github.com/declare-lab/conv-emotion.
Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets.
Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at http://affective-meld.github.io.
Sentiment analysis has immense implications in e-commerce through user feedback mining. Aspect-based sentiment analysis takes this one step further by enabling businesses to extract aspect specific sentimental information. In this paper, we present a novel approach of incorporating the neighboring aspects related information into the sentiment classification of the target aspect using memory networks. We show that our method outperforms the state of the art by 1.6% on average in two distinct domains: restaurant and laptop.
Multimodal sentiment analysis is a developing area of research, which involves the identification of sentiments in videos. Current research considers utterances as independent entities, i.e., ignores the interdependencies and relations among the utterances of a video. In this paper, we propose a LSTM-based model that enables utterances to capture contextual information from their surroundings in the same video, thus aiding the classification process. Our method shows 5-10% performance improvement over the state of the art and high robustness to generalizability.