Understanding satire and humor is a challenging task for even current Vision-Language models. In this paper, we propose the challenging tasks of Satirical Image Detection (detecting whether an image is satirical), Understanding (generating the reason behind the image being satirical), and Completion (given one half of the image, selecting the other half from 2 given options, such that the complete image is satirical) and release a high-quality dataset ***YesBut***, consisting of 2547 images, 1084 satirical and 1463 non-satirical, containing different artistic styles, to evaluate those tasks. Each satirical image in the dataset depicts a normal scenario, along with a conflicting scenario which is funny or ironic. Despite the success of current Vision-Language Models on multimodal tasks such as Visual QA and Image Captioning, our benchmarking experiments show that such models perform poorly on the proposed tasks on the ***YesBut*** Dataset in Zero-Shot Settings w.r.t both automated as well as human evaluation. Additionally, we release a dataset of 119 real, satirical photographs for further research.
In an ever-expanding world of domain-specific knowledge, the increasing complexity of consuming, and storing information necessitates the generation of summaries from large information repositories. However, every persona of a domain has different requirements of information and hence their summarization. For example, in the healthcare domain, a persona-based (such as Doctor, Nurse, Patient etc.) approach is imperative to deliver targeted medical information efficiently. Persona-based summarization of domain-specific information by humans is a high cognitive load task and is generally not preferred. The summaries generated by two different humans have high variability and do not scale in cost and subject matter expertise as domains and personas grow. Further, AI-generated summaries using generic Large Language Models (LLMs) may not necessarily offer satisfactory accuracy for different domains unless they have been specifically trained on domain-specific data and can also be very expensive to use in day-to-day operations. Our contribution in this paper is two-fold: 1) We present an approach to efficiently fine-tune a domain-specific small foundation LLM using a healthcare corpus and also show that we can effectively evaluate the summarization quality using AI-based critiquing. 2) We further show that AI-based critiquing has good concordance with Human-based critiquing of the summaries. Hence, such AI-based pipelines to generate domain-specific persona-based summaries can be easily scaled to other domains such as legal, enterprise documents, education etc. in a very efficient and cost-effective manner.
Large Language Models (LLMs) exhibit impressive zero/few-shot inference and generation quality for high-resource languages (HRLs). A few of them have been trained on low-resource languages (LRLs) and give decent performance. Owing to the prohibitive costs of training LLMs, they are usually used as a network service, with the client charged by the count of input and output tokens. The number of tokens strongly depends on the script and language, as well as the LLM’s subword vocabulary. We show that LRLs are at a pricing disadvantage, because the well-known LLMs produce more tokens for LRLs than HRLs. This is because most currently popular LLMs are optimized for HRL vocabularies. Our objective is to level the playing field: reduce the cost of processing LRLs in contemporary LLMs while ensuring that predictive and generative qualities are not compromised. As means to reduce the number of tokens processed by the LLM, we consider code-mixing, translation, and transliteration of LRLs to HRLs. We perform an extensive study using the IndicXTREME classification and six generative tasks dataset, covering 15 Indic and 3 other languages, while using GPT-4 (one of the costliest LLM services released so far) as a commercial LLM. We observe and analyze interesting patterns involving token count, cost, and quality across a multitude of languages and tasks. We show that choosing the best policy to interact with the LLM can reduce cost by ~90% while giving better or comparable performance, compared to communicating with the LLM in the original LRL.
Question-answering (QA) on hybrid scientific tabular and textual data deals with scientific information, and relies on complex numerical reasoning. In recent years, while tabular QA has seen rapid progress, understanding their robustness on scientific information is lacking due to absence of any benchmark dataset. To investigate the robustness of the existing state-of-the-art QA models on scientific hybrid tabular data, we propose a new dataset, “SciTabQA”, consisting of 822 question-answer pairs from scientific tables and their descriptions. With the help of this dataset, we assess the state-of-the-art Tabular QA models based on their ability (i) to use heterogeneous information requiring both structured data (table) and unstructured data (text) and (ii) to perform complex scientific reasoning tasks. In essence, we check the capability of the models to interpret scientific tables and text. Our experiments show that “SciTabQA” is an innovative dataset to study question-answering over scientific heterogeneous data. We benchmark three state-of-the-art Tabular QA models, and find that the best F1 score is only 0.462.
The absence of explicitly tailored, accessible annotated datasets for educational purposes presents a notable obstacle for NLP tasks in languages with limited resources. This study initially explores the feasibility of using machine translation (MT) to convert an existing dataset into a Tigrinya dataset in SQuAD format. As a result, we present TIGQA, an expert-annotated dataset containing 2,685 question-answer pairs covering 122 diverse topics such as climate, water, and traffic. These pairs are from 537 context paragraphs in publicly accessible Tigrinya and Biology books. Through comprehensive analyses, we demonstrate that the TIGQA dataset requires skills beyond simple word matching, requiring both single-sentence and multiple-sentence inference abilities. We conduct experiments using state-of-the-art MRC methods, marking the first exploration of such models on TIGQA. Additionally, we estimate human performance on the dataset and juxtapose it with the results obtained from pre-trained models. The notable disparities between human performance and the best model performance underscore the potential for fu- ture enhancements to TIGQA through continued research. Our dataset is freely accessible via the provided link to encourage the research community to address the challenges in the Tigrinya MRC. Keywords: Tigrinya QA dataset, Low resource QA dataset, domain specific QA
We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata informationto frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, **FLAN-FinXC**, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.
In this paper, we propose sequence-based pre-training methods to enhance procedural understanding in natural language processing. Procedural text, containing sequential instructions to accomplish a task, is difficult to understand due to the changing attributes of entities in the context. We focus on recipes as they are commonly represented as ordered instructions, and use this order as a supervision signal. Our work is one of the first to compare several ‘order-as-supervision’ transformer pre-training methods, including Permutation Classification, Embedding Regression, and Skip-Clip, and show that these methods give improved results compared to baselines and SoTA LLMs on two downstream Entity-Tracking datasets: NPN-Cooking dataset in recipe domain and ProPara dataset in open domain. Our proposed methods address the non-trivial Entity Tracking Task that requires prediction of entity states across procedure steps, which requires understanding the order of steps. These methods show an improvement over the best baseline by 1.6% and 7-9% on NPN-Cooking and ProPara Datasets respectively across metrics.
The U.S. Securities and Exchange Commission (SEC) mandates all public companies to file periodic financial statements that should contain numerals annotated with a particular label from a taxonomy. In this paper, we formulate the task of automating the assignment of a label to a particular numeral span in a sentence from an extremely large label set. Towards this task, we release a dataset, Financial Numeric Extreme Labelling (FNXL), annotated with 2,794 labels. We benchmark the performance of the FNXL dataset by formulating the task as (a) a sequence labelling problem and (b) a pipeline with span extraction followed by Extreme Classification. Although the two approaches perform comparably, the pipeline solution provides a slight edge for the least frequent labels.
Multilingual language models (MLLMs) like mBERTpromise to extend the benefits of NLP research to low-resource languages (LRLs). However, LRL words are under-represented in the wordpiece/subword vocabularies of MLLMs. This leads to many LRL words getting replaced by UNK, or concatenated from morphologically unrelated wordpieces, leading to low task accuracy. (Pre)-training MLLMs after including LRL documents is resource-intensive in terms of both human inputs and computational resources. In response, we propose EVALM (entropy-based vocabulary augmented language model), which uses a new task-cognizant measurement to detect the most vulnerable LRL words, whose wordpiece segmentations are undesirable. EVALM then provides reasonable initializations of their embeddings, followed by limited fine-tuning using the small LRL task corpus. Our experiments show significant performance improvements and also some surprising limits to such vocabulary augmentation strategies in various classification tasks for multiple diverse LRLs, as well as code-mixed texts. We will release the code and data to enable further research.
In this paper, we propose ***CLMSM***, a domain-specific, continual pre-training framework, that learns from a large set of procedural recipes. ***CLMSM*** uses a Multi-Task Learning Framework to optimize two objectives - a) Contrastive Learning using hard triplets to learn fine-grained differences across entities in the procedures, and b) a novel Mask-Step Modelling objective to learn step-wise context of a procedure. We test the performance of ***CLMSM*** on the downstream tasks of tracking entities and aligning actions between two procedures on three datasets, one of which is an open-domain dataset not conforming with the pre-training dataset. We show that ***CLMSM*** not only outperforms baselines on recipes (in-domain) but is also able to generalize to open-domain procedural NLP tasks.
Despite tremendous progress in automatic summarization, state-of-the-art methods are predominantly trained to excel in summarizing short newswire articles, or documents with strong layout biases such as scientific articles or government reports. Efficient techniques to summarize financial documents, discussing facts and figures, have largely been unexplored, majorly due to the unavailability of suitable datasets. In this work, we present ECTSum, a new dataset with transcripts of earnings calls (ECTs), hosted by publicly traded companies, as documents, and experts-written short telegram-style bullet point summaries derived from corresponding Reuters articles. ECTs are long unstructured documents without any prescribed length limit or format. We benchmark our dataset with state-of-the-art summarization methods across various metrics evaluating the content quality and factual consistency of the generated summaries. Finally, we present a simple yet effective approach, ECT-BPS, to generate a set of bullet points that precisely capture the important facts discussed in the calls.
Systems like Voice-command based conversational agents are characterized by a pre-defined set of skills or intents to perform user specified tasks. In the course of time, newer intents may emerge requiring retraining. However, the newer intents may not be explicitly announced and need to be inferred dynamically. Thus, there are two important tasks at hand (a). identifying emerging new intents, (b). annotating data of the new intents so that the underlying classifier can be retrained efficiently. The tasks become specially challenging when a large number of new intents emerge simultaneously and there is a limited budget of manual annotation. In this paper, we propose MNID (Multiple Novel Intent Detection) which is a cluster based framework to detect multiple novel intents with budgeted human annotation cost. Empirical results on various benchmark datasets (of different sizes) demonstrate that MNID, by intelligently using the budget for annotation, outperforms the baseline methods in terms of accuracy and F1-score.
In this digital age, online users expect personalized content. To cater to diverse group of audiences across online platforms it is necessary to generate multiple variants of same content with differing degree of characteristics (sentiment, style, formality, etc.). Though text-style transfer is a well explored related area, it focuses on flipping the style attribute polarity instead of regulating a fine-grained attribute transfer. In this paper we propose a hierarchical architecture for finer control over the at- tribute, preserving content using attribute dis- entanglement. We demonstrate the effective- ness of the generative process for two different attributes with varied complexity, namely sentiment and formality. With extensive experiments and human evaluation on five real-world datasets, we show that the framework can generate natural looking sentences with finer degree of control of intensity of a given attribute.
Relation classification (sometimes called ‘extraction’) requires trustworthy datasets for fine-tuning large language models, as well as for evaluation. Data collection is challenging for Indian languages, because they are syntactically and morphologically diverse, as well as different from resource-rich languages like English. Despite recent interest in deep generative models for Indian languages, relation classification is still not well-served by public data sets. In response, we present IndoRE, a dataset with 39K entity- and relation-tagged gold sentences in three Indian languages, plus English. We start with a multilingual BERT (mBERT) based system that captures entity span positions and type information and provides competitive monolingual relation classification. Using this system, we explore and compare transfer mechanisms between languages. In particular, we study the accuracy-efficiency tradeoff between expensive gold instances vs. translated and aligned ‘silver’ instances.
Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper, we meticulously create a large amount of data connected with E-manuals and develop a suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals, and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40% in ROUGE-L F1 scores over most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.
The stance detection task aims at detecting the stance of a tweet or a text for a target. These targets can be named entities or free-form sentences (claims). Though the task involves reasoning of the tweet with respect to a target, we find that it is possible to achieve high accuracy on several publicly available Twitter stance detection datasets without looking at the target sentence. Specifically, a simple tweet classification model achieved human-level performance on the WT–WT dataset and more than two-third accuracy on various other datasets. We investigate the existence of biases in such datasets to find the potential spurious correlations of sentiment-stance relations and lexical choice associated with the stance category. Furthermore, we propose a new large dataset free of such biases and demonstrate its aptness on the existing stance detection systems. Our empirical findings show much scope for research on the stance detection task and proposes several considerations for creating future stance detection datasets.
Recently, biomedical version of embeddings obtained from language models such as BioELMo have shown state-of-the-art results for the textual inference task in the medical domain. In this paper, we explore how to incorporate structured domain knowledge, available in the form of a knowledge graph (UMLS), for the Medical NLI task. Specifically, we experiment with fusing embeddings obtained from knowledge graph with the state-of-the-art approaches for NLI task (ESIM model). We also experiment with fusing the domain-specific sentiment information for the task. Experiments conducted on MedNLI dataset clearly show that this strategy improves the baseline BioELMo architecture for the Medical NLI task.
The recently released FEVER dataset provided benchmark results on a fact-checking task in which given a factual claim, the system must extract textual evidence (sets of sentences from Wikipedia pages) that support or refute the claim. In this paper, we present a completely task-agnostic pipelined system, AttentiveChecker, consisting of three homogeneous Bi-Directional Attention Flow (BIDAF) networks, which are multi-layer hierarchical networks that represent the context at different levels of granularity. We are the first to apply to this task a bi-directional attention flow mechanism to obtain a query-aware context representation without early summarization. AttentiveChecker can be used to perform document retrieval, sentence selection, and claim verification. Experiments on the FEVER dataset indicate that AttentiveChecker is able to achieve the state-of-the-art results on the FEVER test set.
Multilingual writers and speakers often alternate between two languages in a single discourse. This practice is called “code-switching”. Existing sentiment detection methods are usually trained on sentiment-labeled monolingual text. Manually labeled code-switched text, especially involving minority languages, is extremely rare. Consequently, the best monolingual methods perform relatively poorly on code-switched text. We present an effective technique for synthesizing labeled code-switched text from labeled monolingual text, which is relatively readily available. The idea is to replace carefully selected subtrees of constituency parses of sentences in the resource-rich language with suitable token spans selected from automatic translations to the resource-poor language. By augmenting the scarce labeled code-switched text with plentiful synthetic labeled code-switched text, we achieve significant improvements in sentiment labeling accuracy (1.5%, 5.11% 7.20%) for three different language pairs (English-Hindi, English-Spanish and English-Bengali). The improvement is even significant in hatespeech detection whereby we achieve a 4% improvement using only synthetic code-switched data (6% with data augmentation).
Code-Switching (CS) between two languages is extremely common in communities with societal multilingualism where speakers switch between two or more languages when interacting with each other. CS has been extensively studied in spoken language by linguists for several decades but with the popularity of social-media and less formal Computer Mediated Communication, we now see a big rise in the use of CS in the text form. This poses interesting challenges and a need for computational processing of such code-switched data. As with any Computational Linguistic analysis and Natural Language Processing tools and applications, we need annotated data for understanding, processing, and generation of code-switched language. In this study, we focus on CS between English and Hindi Tweets extracted from the Twitter stream of Hindi-English bilinguals. We present an annotation scheme for annotating the pragmatic functions of CS in Hindi-English (Hi-En) code-switched tweets based on a linguistic analysis and some initial experiments.
This paper proposes a graphical framework to extract opinionated sentences which highlight different contexts within a given news article by introducing the concept of diversity in a graphical model for opinion detection. We conduct extensive evaluations and find that the proposed modification leads to impressive improvement in performance and makes the final results of the model much more usable. The proposed method (OP-D) not only performs much better than the other techniques used for opinion detection as well as introducing diversity, but is also able to select opinions from different categories (Asher et al. 2009). By developing a classification model which categorizes the identified sentences into various opinion categories, we find that OP-D is able to push opinions from different categories uniformly among the top opinions.
We present a study of the word interaction networks of Bengali in the framework of complex networks. The topological properties of these networks reveal interesting insights into the morpho-syntax of the language, whereas clustering helps in the induction of the natural word classes leading to a principled way of designing POS tagsets. We compare different network construction techniques and clustering algorithms based on the cohesiveness of the word clusters. Cohesiveness is measured against two gold-standard tagsets by means of the novel metric of tag-entropy. The approach presented here is a generic one that can be easily extended to any language.