Siyuan Wang


2024

pdf bib
In Search of the Long-Tail: Systematic Generation of Long-Tail Inferential Knowledge via Logical Rule Guided Search
Huihan Li | Yuting Ning | Zeyi Liao | Siyuan Wang | Xiang Lorraine Li | Ximing Lu | Wenting Zhao | Faeze Brahman | Yejin Choi | Xiang Ren
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

To effectively use large language models (LLMs) for real-world queries, it is imperative that they generalize to the long-tail distribution, i.e. rare examples where models exhibit low confidence. In this work, we take the first step towards evaluating LLMs in the long-tail distribution of inferential knowledge. We exemplify long-tail evaluation on the Natural Language Inference task. First, we introduce Logic-Induced-Knowledge-Search (LINK), a systematic long-tail data generation framework, to obtain factually-correct yet long-tail inferential statements. LINK uses variable-wise prompting grounded on symbolic rules to seek low-confidence statements while ensuring factual correctness. We then use LINK to curate Logic-Induced-Long-Tail (LINT), a large-scale long-tail inferential knowledge dataset that contains 108K statements spanning four domains. We evaluate popular LLMs on LINT; we find that state-of-the-art LLMs show significant performance drop (21% relative drop for GPT4) on long-tail data as compared to on head distribution data, and smaller models show even more generalization weakness. These results further underscore the necessity of long-tail evaluation in developing generalizable LLMs.

pdf bib
From LLMs to MLLMs: Exploring the Landscape of Multimodal Jailbreaking
Siyuan Wang | Zhuohan Long | Zhihao Fan | Zhongyu Wei
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.

pdf bib
Symbolic Working Memory Enhances Language Models for Complex Rule Application
Siyuan Wang | Zhongyu Wei | Yejin Choi | Xiang Ren
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have shown remarkable reasoning performance but struggle with multi-step deductive reasoning involving a series of rule application steps, especially when rules are presented non-sequentially. Our preliminary analysis shows that while LLMs excel in single-step rule application, their performance drops significantly in multi-step scenarios due to the challenge in rule grounding. It requires anchoring the applicable rule and supporting facts at each step, amidst multiple input rules, facts, and inferred facts. To address this, we propose augmenting LLMs with external working memory and introduce a neurosymbolic framework for rule application. The memory stores facts and rules in both natural language and symbolic forms, enabling precise tracking. Utilizing this memory, our framework iteratively performs symbolic rule grounding and LLM-based rule implementation. The former matches predicates and variables of symbolic rules and facts to ground applicable rules at each step. Experiments indicate our framework’s effectiveness in rule application and its robustness across various steps and settings.

pdf bib
ALaRM: Align Language Models via Hierarchical Rewards Modeling
Yuhang Lai | Siyuan Wang | Shujun Liu | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: ACL 2024

We introduce ALaRM, the first framework modeling hierarchical rewards in reinforcement learning from human feedback (RLHF), which is designed to enhance the alignment of large language models (LLMs) with human preferences. The framework addresses the limitations of current alignment approaches, which often struggle with the inconsistency and sparsity of human supervision signals, by integrating holistic rewards with aspect-specific rewards. This integration enables more precise and consistent guidance of language models towards desired outcomes, particularly in complex and open text generation tasks. By employing a methodology that filters and combines multiple rewards based on their consistency, the framework provides a reliable mechanism for improving model alignment. We validate our approach through applications in long-form question answering and machine translation tasks, employing gpt-3.5-turbo for pairwise comparisons, and demonstrate improvements over existing baselines. Our work underscores the effectiveness of hierarchical rewards modeling in refining LLM training processes for better human preference alignment. We release our code at https://ALaRM-fdu.github.io.

pdf bib
Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs
Siyuan Wang | Zhongyu Wei | Yejin Choi | Xiang Ren
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks. However, their mastery of underlying inferential rules still falls short of human capabilities. To investigate this, we propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic, comprising both primitive and compositional rules across five domains. Our analysis of GPT-series models over a rule subset reveals significant gaps in LLMs’ logic understanding compared to human performance, especially in compositional and structural complex rules with certain bias patterns. We further distill these rules into a smaller-scale inference engine for flexible rule generation and enhancing downstream reasoning. Through a multi-judger evaluation, our inference engine proves effective in generating accurate, complex and abstract conclusions and premises, and improve various commonsense reasoning tasks. Overall, our work sheds light on LLMs’ limitations in grasping inferential rule and suggests ways to enhance their logical reasoning abilities .

pdf bib
Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization
Libo Sun | Siyuan Wang | Meng Han | Ruofei Lai | Xinyu Zhang | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Product review summarization aims to generate a concise summary based on product reviews to facilitate purchasing decisions. This intricate task gives rise to three challenges in existing work: factual accuracy, aspect comprehensiveness, and content relevance. In this paper, we first propose an FB-Thinker framework to improve the summarization ability of LLMs with multi-objective forward reasoning and multi-reward backward refinement. To enable LLM with these dual capabilities, we present two Chinese product review summarization datasets, Product-CSum and Product-CSum-Cross, for both instruction-tuning and cross-domain evaluation. Specifically, these datasets are collected via GPT-assisted manual annotations from an online forum and public datasets. We further design an evaluation mechanism Product-Eval, integrating both automatic and human evaluation across multiple dimensions for product summarization. Experimental results show the competitiveness and generalizability of our proposed framework in the product review summarization tasks.

2023

pdf bib
Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs
Siyuan Wang | Zhongyu Wei | Meng Han | Zhihao Fan | Haijun Shan | Qi Zhang | Xuanjing Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Logical reasoning over incomplete knowledge graphs to answer complex logical queries is a challenging task. With the emergence of new entities and relations in constantly evolving KGs, inductive logical reasoning over KGs has become a crucial problem. However, previous PLMs-based methods struggle to model the logical structures of complex queries, which limits their ability to generalize within the same structure. In this paper, we propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs. It encodes linearized query structures and entities using pre-trained language models to find answers. For structure modeling of complex queries, we design stepwise instructions that implicitly prompt PLMs on the execution order of geometric operations in each query. We further separately model different geometric operations (i.e., projection, intersection, and union) on the representation space using a pre-trained encoder with additional attention and maxout layers to enhance structured modeling. We conduct experiments on two inductive logical reasoning datasets and three transductive datasets. The results demonstrate the effectiveness of our method on logical reasoning over KGs in both inductive and transductive settings.

pdf bib
Fine-grained Medical Vision-Language Representation Learning for Radiology Report Generation
Siyuan Wang | Bo Peng | Yichao Liu | Qi Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Given the input radiology images, the objective of radiology report generation is to produce accurate and comprehensive medical reports, which typically include multiple descriptive clinical sentences associated with different phenotypes. Most existing works have relied on a pre-trained vision encoder to extract the visual representations of the images. In this study, we propose a phenotype-driven medical vision-language representation learning framework to efficiently bridge the gap between visual and textual modalities for improved text-oriented generation. In contrast to conventional methods which learn medical vision-language representations by contrasting images with entire reports, our approach learns more fine-grained representations by contrasting images with each sentence within the reports. The learned fine-grained representations can be used to improve radiology report generation. The experiments on two widely-used datasets MIMIC-CXR and IU X-ray demonstrate that our method can achieve promising performances and substantially outperform the conventional vision-language representation learning methods.

pdf bib
A Self-training Framework for Automated Medical Report Generation
Siyuan Wang | Zheng Liu | Bo Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Medical report generation, focusing on automatically generating accurate clinical findings from medical images, is an important medical artificial intelligence task. It reduces the workload of physicians in writing reports. Many of the current methods depend heavily on labeled datasets that include a large amount of image-report pairs, but such datasets labeled by physicians are hard to acquire in clinical practice. To this end, in this paper, we introduce a self-training framework named REMOTE (i.e., Revisiting sElf-training for Medical repOrT gEneration) to exploit the unlabeled medical images and a reference-free evaluation metric MedCLIPScore to augment a small-scale medical report generation dataset for training accurate medical report generation model. Experiments and analysis conducted on the MIMIC-CXR and IU-Xray benchmark datasets demonstrate that, our REMOTE framework, using 1% labeled training data, achieves competitive performance with previous fully-supervised models that are trained on entire training data.

pdf bib
基于推理链的多跳问答对抗攻击和对抗增强训练方法(Reasoning Chain Based Adversarial Attack and Adversarial Augmentation Training for Multi-hop Question Answering)
Jiayu Ding (佳玙丁,) | Siyuan Wang (王思远) | Zhongyu Wei (魏忠钰) | Qin Chen (陈琴) | Xuanjing Huang (黄萱菁)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“本文提出了一种基于多跳推理链的对抗攻击方法,通过向输入文本中加入对抗性的攻击文本,并测试问答模型在干扰数据下生成答案的准确性,以检测问答模型真正执行多跳推理的能力和可解释性。该方法首先从输入文本中抽取从问题实体到答案实体的推理链,并基于推理链的特征把多跳问题分为了不同的推理类型,提出了一个模型来自动化实现问题拆解和推理类型预测,然后根据推理类型对原问题进行修改来构造攻击干扰句。实验对多个多跳问答模型进行了对抗攻击测试,所有模型的性能都显著下降,验证了该攻击方法的有效性以及目前问答模型存在的不足;向原训练集中加入对抗样本进行增强训练后,模型性能均有所回升,证明了本对抗增强训练方法可以提升模型的鲁棒性。”

2022

pdf bib
Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text
Siyuan Wang | Wanjun Zhong | Duyu Tang | Zhongyu Wei | Zhihao Fan | Daxin Jiang | Ming Zhou | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2022

Logical reasoning of text requires identifying critical logical structures in the text and performing inference over them. Existing methods for logical reasoning mainly focus on contextual semantics of text while struggling to explicitly model the logical inference process. In this paper, we not only put forward a logic-driven context extension framework but also propose a logic-driven data augmentation algorithm. The former follows a three-step reasoning paradigm, and each step is respectively to extract logical expressions as elementary reasoning units, symbolically infer the implicit expressions following equivalence laws and extend the context to validate the options. The latter augments literally similar but logically different instances and incorporates contrastive learning to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on two benchmark datasets, ReClor and LogiQA. The results show that our method achieves state-of-the-art performance on both datasets, and even surpasses human performance on the ReClor dataset.

pdf bib
Analytical Reasoning of Text
Wanjun Zhong | Siyuan Wang | Duyu Tang | Zenan Xu | Daya Guo | Yining Chen | Jiahai Wang | Jian Yin | Ming Zhou | Nan Duan
Findings of the Association for Computational Linguistics: NAACL 2022

Analytical reasoning is an essential and challenging task that requires a system to analyze a scenario involving a set of particular circumstances and perform reasoning over it to make conclusions. However, current neural models with implicit reasoning ability struggle to solve this task. In this paper, we study the challenge of analytical reasoning of text and collect a new dataset consisting of questions from the Law School Admission Test from 1991 to 2016. We analyze what knowledge understanding and reasoning abilities are required to do well on this task, and present an approach dubbed ARM. It extracts knowledge such as participants and facts from the context. Such knowledge are applied to an inference engine to deduce legitimate solutions for drawing conclusions. In our experiments, we find that ubiquitous pre-trained models struggle to deal with this task as their performance is close to random guess. Results show that ARM outperforms pre-trained models significantly. Moreover, we demonstrate that ARM has better explicit interpretable reasoning ability.

pdf bib
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences for Image-Text Retrieval
Zhihao Fan | Zhongyu Wei | Zejun Li | Siyuan Wang | Xuanjing Huang | Jianqing Fan
Findings of the Association for Computational Linguistics: NAACL 2022

Matching model is essential for Image-Text Retrieval framework. Existing research usually train the model with a triplet loss and explore various strategy to retrieve hard negative sentences in the dataset. We argue that current retrieval-based negative sample construction approach is limited in the scale of the dataset thus fail to identify negative sample of high difficulty for every image. We propose our TAiloring neGative Sentences with Discrimination and Correction (TAGS-DC) to generate synthetic sentences automatically as negative samples. TAGS-DC is composed of masking and refilling to generate synthetic negative sentences with higher difficulty. To keep the difficulty during training, we mutually improve the retrieval and generation through parameter sharing. To further utilize fine-grained semantic of mismatch in the negative sentence, we propose two auxiliary tasks, namely word discrimination and word correction to improve the training. In experiments, we verify the effectiveness of our model on MS-COCO and Flickr30K compared with current state-of-the-art models and demonstrates its robustness and faithfulness in the further analysis.

pdf bib
Locate Then Ask: Interpretable Stepwise Reasoning for Multi-hop Question Answering
Siyuan Wang | Zhongyu Wei | Zhihao Fan | Qi Zhang | Xuanjing Huang
Proceedings of the 29th International Conference on Computational Linguistics

Multi-hop reasoning requires aggregating multiple documents to answer a complex question. Existing methods usually decompose the multi-hop question into simpler single-hop questions to solve the problem for illustrating the explainable reasoning process. However, they ignore grounding on the supporting facts of each reasoning step, which tends to generate inaccurate decompositions. In this paper, we propose an interpretable stepwise reasoning framework to incorporate both single-hop supporting sentence identification and single-hop question generation at each intermediate step, and utilize the inference of the current hop for the next until reasoning out the final result. We employ a unified reader model for both intermediate hop reasoning and final hop inference and adopt joint optimization for more accurate and robust multi-hop reasoning. We conduct experiments on two benchmark datasets HotpotQA and 2WikiMultiHopQA. The results show that our method can effectively boost performance and also yields a better interpretable reasoning process without decomposition supervision.

pdf bib
A Structure-Aware Argument Encoder for Literature Discourse Analysis
Yinzi Li | Wei Chen | Zhongyu Wei | Yujun Huang | Chujun Wang | Siyuan Wang | Qi Zhang | Xuanjing Huang | Libo Wu
Proceedings of the 29th International Conference on Computational Linguistics

Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE.

2021

pdf bib
Mask Attention Networks: Rethinking and Strengthen Transformer
Zhihao Fan | Yeyun Gong | Dayiheng Liu | Zhongyu Wei | Siyuan Wang | Jian Jiao | Nan Duan | Ruofei Zhang | Xuanjing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer is an attention-based neural network, which consists of two sublayers, namely, Self-Attention Network (SAN) and Feed-Forward Network (FFN). Existing research explores to enhance the two sublayers separately to improve the capability of Transformer for text representation. In this paper, we present a novel understanding of SAN and FFN as Mask Attention Networks (MANs) and show that they are two special cases of MANs with static mask matrices. However, their static mask matrices limit the capability for localness modeling in text representation learning. We therefore introduce a new layer named dynamic mask attention network (DMAN) with a learnable mask matrix which is able to model localness adaptively. To incorporate advantages of DMAN, SAN, and FFN, we propose a sequential layered structure to combine the three types of layers. Extensive experiments on various tasks, including neural machine translation and text summarization demonstrate that our model outperforms the original Transformer.

2020

pdf bib
An Enhanced Knowledge Injection Model for Commonsense Generation
Zhihao Fan | Yeyun Gong | Zhongyu Wei | Siyuan Wang | Yameng Huang | Jian Jiao | Xuanjing Huang | Nan Duan | Ruofei Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, experimental results show that our method significantly improves the performance on all the metrics.

pdf bib
PathQG: Neural Question Generation from Facts
Siyuan Wang | Zhongyu Wei | Zhihao Fan | Zengfeng Huang | Weijian Sun | Qi Zhang | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing research for question generation encodes the input text as a sequence of tokens without explicitly modeling fact information. These models tend to generate irrelevant and uninformative questions. In this paper, we explore to incorporate facts in the text for question generation in a comprehensive way. We present a novel task of question generation given a query path in the knowledge graph constructed from the input text. We divide the task into two steps, namely, query representation learning and query-based question generation. We formulate query representation learning as a sequence labeling problem for identifying the involved facts to form a query and employ an RNN-based generator for question generation. We first train the two modules jointly in an end-to-end fashion, and further enforce the interaction between these two modules in a variational framework. We construct the experimental datasets on top of SQuAD and results show that our model outperforms other state-of-the-art approaches, and the performance margin is larger when target questions are complex. Human evaluation also proves that our model is able to generate relevant and informative questions.

2019

pdf bib
Bridging by Word: Image Grounded Vocabulary Construction for Visual Captioning
Zhihao Fan | Zhongyu Wei | Siyuan Wang | Xuanjing Huang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Image Captioning aims at generating a short description for an image. Existing research usually employs the architecture of CNN-RNN that views the generation as a sequential decision-making process and the entire dataset vocabulary is used as decoding space. They suffer from generating high frequent n-gram with irrelevant words. To tackle this problem, we propose to construct an image-grounded vocabulary, based on which, captions are generated with limitation and guidance. In specific, a novel hierarchical structure is proposed to construct the vocabulary incorporating both visual information and relations among words. For generation, we propose a word-aware RNN cell incorporating vocabulary information into the decoding process directly. Reinforce algorithm is employed to train the generator using constraint vocabulary as action space. Experimental results on MS COCO and Flickr30k show the effectiveness of our framework compared to some state-of-the-art models.

2018

pdf bib
A Reinforcement Learning Framework for Natural Question Generation using Bi-discriminators
Zhihao Fan | Zhongyu Wei | Siyuan Wang | Yang Liu | Xuanjing Huang
Proceedings of the 27th International Conference on Computational Linguistics

Visual Question Generation (VQG) aims to ask natural questions about an image automatically. Existing research focus on training model to fit the annotated data set that makes it indifferent from other language generation tasks. We argue that natural questions need to have two specific attributes from the perspectives of content and linguistic respectively, namely, natural and human-written. Inspired by the setting of discriminator in adversarial learning, we propose two discriminators, one for each attribute, to enhance the training. We then use the reinforcement learning framework to incorporate scores from the two discriminators as the reward to guide the training of the question generator. Experimental results on a benchmark VQG dataset show the effectiveness and robustness of our model compared to some state-of-the-art models in terms of both automatic and human evaluation metrics.