Tianlu Wang


2024

pdf bib
The ART of LLM Refinement: Ask, Refine, and Trust
Kumar Shridhar | Koustuv Sinha | Andrew Cohen | Tianlu Wang | Ping Yu | Ramakanth Pasunuru | Mrinmaya Sachan | Jason Weston | Asli Celikyilmaz
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable generative abilities, but can they judge the quality of their own generations and self-improve?A popular concept, referred to as *self-refinement*, postulates that LLMs can detect and correct the errors in their generations when asked to do so. However, recent empirical evidence points in the opposite direction, suggesting that LLMs often struggle to accurately identify errors when reasoning is involved. To address this, we propose a reasoning with a refinement strategy called *ART: Ask, Refine, and Trust*, which *asks* necessary questions to decide when an LLM should *refine* its output, and uses it to affirm or deny *trust* in its refinement by ranking the refinement and the initial prediction. On two multistep reasoning tasks of mathematical word problems (GSM8K) and question answering (StrategyQA), *ART* achieves a performance gain of +5 points over self-refinement baselines, while using a much smaller model as the decision maker. We believe that *ART* with smaller models, making refinement decisions can be a cost-effective alternative to fine-tuning LLMs.

2023

pdf bib
ALERT: Adapt Language Models to Reasoning Tasks
Ping Yu | Tianlu Wang | Olga Golovneva | Badr AlKhamissi | Siddharth Verma | Zhijing Jin | Gargi Ghosh | Mona Diab | Asli Celikyilmaz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models have enabled them to perform well on complex tasks that require step-by-step reasoning with few-shot learning. However, it is unclear whether these models are applying reasoning skills they have learnt during pre-training , or if they are simply memorizing their training corpus at finer granularity and have learnt to better understand their context. To address this question, we introduce {pasted macro ‘OUR’}model, a benchmark and suite of analyses for evaluating reasoning skills of language models. {pasted macro ‘OUR’}model enables comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. Our benchmark provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. By using {pasted macro ‘OUR’}model we further investigate the role of finetuning. Our extensive empirical analysis shows that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during the finetuning stage compared to pretraining stage. However, we also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.

pdf bib
Understanding In-Context Learning via Supportive Pretraining Data
Xiaochuang Han | Daniel Simig | Todor Mihaylov | Yulia Tsvetkov | Asli Celikyilmaz | Tianlu Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In-context learning (ICL) improves language models’ performance on a variety of NLP tasks by simply demonstrating a handful of examples at inference time. It is not well understood why ICL ability emerges, as the model has never been specifically trained on such demonstrations. Unlike prior work that explores implicit mechanisms behind ICL, we study ICL via investigating the pretraining data. Specifically, we first adapt an iterative, gradient-based approach to find a small subset of pretraining data that supports ICL. We observe that a continued pretraining on this small subset significantly improves the model’s ICL ability, by up to 18%. We then compare the supportive subset constrastively with random subsets of pretraining data and discover: (1) The supportive pretraining data to ICL do not have a higher domain relevance to downstream tasks. (2) The supportive pretraining data have a higher mass of rarely occurring, long-tail tokens. (3) The supportive pretraining data are challenging examples where the information gain from long-range context is below average, indicating learning to incorporate difficult long-range context encourages ICL. Our work takes a first step towards understanding ICL via analyzing instance-level pretraining data. Our insights have a potential to enhance the ICL ability of language models by actively guiding the construction of pretraining data in the future.

pdf bib
Gender Biases in Automatic Evaluation Metrics for Image Captioning
Haoyi Qiu | Zi-Yi Dou | Tianlu Wang | Asli Celikyilmaz | Nanyun Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Model-based evaluation metrics (e.g., CLIPScore and GPTScore) have demonstrated decent correlations with human judgments in various language generation tasks. However, their impact on fairness remains largely unexplored. It is widely recognized that pretrained models can inadvertently encode societal biases, thus employing these models for evaluation purposes may inadvertently perpetuate and amplify biases. For example, an evaluation metric may favor the caption “a woman is calculating an account book” over “a man is calculating an account book,” even if the image only shows male accountants. In this paper, we conduct a systematic study of gender biases in model-based automatic evaluation metrics for image captioning tasks. We start by curating a dataset comprising profession, activity, and object concepts associated with stereotypical gender associations. Then, we demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations, as well as the propagation of biases to generation models through reinforcement learning. Finally, we present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments. Our dataset and framework lay the foundation for understanding the potential harm of model-based evaluation metrics, and facilitate future works to develop more inclusive evaluation metrics.

2022

pdf bib
Text Characterization Toolkit (TCT)
Daniel Simig | Tianlu Wang | Verna Dankers | Peter Henderson | Khuyagbaatar Batsuren | Dieuwke Hupkes | Mona Diab
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations

We present a tool, Text Characterization Toolkit (TCT), that researchers can use to study characteristics of large datasets. Furthermore, such properties can lead to understanding the influence of such attributes on models’ behaviour. Traditionally, in most NLP research, models are usually evaluated by reporting single-number performance scores on a number of readily available benchmarks, without much deeper analysis. Here, we argue that – especially given the well-known fact that benchmarks often contain biases, artefacts, and spurious correlations – deeper results analysis should become the de-facto standard when presenting new models or benchmarks. TCT aims at filling this gap by facilitating such deeper analysis for datasets at scale, where datasets can be for training/development/evaluation. TCT includes both an easy-to-use tool, as well as off-the-shelf scripts that can be used for specific analyses. We also present use-cases from several different domains. TCT is used to predict difficult examples for given well-known trained models; TCT is also used to identify (potentially harmful) biases present in a dataset.

pdf bib
Few-shot Learning with Multilingual Generative Language Models
Xi Victoria Lin | Todor Mihaylov | Mikel Artetxe | Tianlu Wang | Shuohui Chen | Daniel Simig | Myle Ott | Naman Goyal | Shruti Bhosale | Jingfei Du | Ramakanth Pasunuru | Sam Shleifer | Punit Singh Koura | Vishrav Chaudhary | Brian O’Horo | Jeff Wang | Luke Zettlemoyer | Zornitsa Kozareva | Mona Diab | Veselin Stoyanov | Xian Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples.

pdf bib
Identifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models
Tianlu Wang | Rohit Sridhar | Diyi Yang | Xuezhi Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Recently, NLP models have achieved remarkable progress across a variety of tasks; however, they have also been criticized for being not robust. Many robustness problems can be attributed to models exploiting “spurious correlations”, or “shortcuts” between the training data and the task labels. Most existing work identifies a limited set of task-specific shortcuts via human priors or error analyses, which requires extensive expertise and efforts. In this paper, we aim to automatically identify such spurious correlations in NLP models at scale. We first leverage existing interpretability methods to extract tokens that significantly affect model’s decision process from the input text. We then distinguish “genuine” tokens and “spurious” tokens by analyzing model predictions across multiple corpora and further verify them through knowledge-aware perturbations. We show that our proposed method can effectively and efficiently identify a scalable set of “shortcuts”, and mitigating these leads to more robust models in multiple applications.

2021

pdf bib
Visual News: Benchmark and Challenges in News Image Captioning
Fuxiao Liu | Yinghan Wang | Tianlu Wang | Vicente Ordonez
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.

2020

pdf bib
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Tianlu Wang | Xi Victoria Lin | Nazneen Fatema Rajani | Bryan McCann | Vicente Ordonez | Caiming Xiong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Word embeddings derived from human-generated corpora inherit strong gender bias which can be further amplified by downstream models. Some commonly adopted debiasing approaches, including the seminal Hard Debias algorithm, apply post-processing procedures that project pre-trained word embeddings into a subspace orthogonal to an inferred gender subspace. We discover that semantic-agnostic corpus regularities such as word frequency captured by the word embeddings negatively impact the performance of these algorithms. We propose a simple but effective technique, Double Hard Debias, which purifies the word embeddings against such corpus regularities prior to inferring and removing the gender subspace. Experiments on three bias mitigation benchmarks show that our approach preserves the distributional semantics of the pre-trained word embeddings while reducing gender bias to a significantly larger degree than prior approaches.

pdf bib
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
Tianlu Wang | Xuezhi Wang | Yao Qin | Ben Packer | Kang Li | Jilin Chen | Alex Beutel | Ed Chi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

NLP models are shown to suffer from robustness issues, i.e., a model’s prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.

2019

pdf bib
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Ryan Cotterell | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we quantify, analyze and mitigate gender bias exhibited in ELMo’s contextualized word vectors. First, we conduct several intrinsic analyses and find that (1) training data for ELMo contains significantly more male than female entities, (2) the trained ELMo embeddings systematically encode gender information and (3) ELMo unequally encodes gender information about male and female entities. Then, we show that a state-of-the-art coreference system that depends on ELMo inherits its bias and demonstrates significant bias on the WinoBias probing corpus. Finally, we explore two methods to mitigate such gender bias and show that the bias demonstrated on WinoBias can be eliminated.

2018

pdf bib
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

In this paper, we introduce a new benchmark for co-reference resolution focused on gender bias, WinoBias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing datasets.

2017

pdf bib
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Language is increasingly being used to de-fine rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively。

2016

pdf bib
Name Tagging for Low-resource Incident Languages based on Expectation-driven Learning
Boliang Zhang | Xiaoman Pan | Tianlu Wang | Ashish Vaswani | Heng Ji | Kevin Knight | Daniel Marcu
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies