In the era of code large language models (code LLMs), data engineering plays a pivotal role during the instruction fine-tuning phase. To train a versatile model, previous efforts devote tremendous efforts into crafting instruction data covering all the downstream scenarios. Nonetheless, this will incur significant expenses in constructing data and training model. Therefore, this paper introduces CodeM, a novel data construction strategy, which can efficiently train a versatile model using less data via our newly proposed ability matrix. CodeM uses ability matrix to decouple code LLMs’ abilities into two dimensions, constructing a lightweight training corpus that only covers a subset of target scenarios. Extensive experiments on HumanEvalPack and MultiPL-E imply that code LLMs can combine the single-dimensional abilities to master composed abilities, validating the effectiveness of CodeM.
The principal task in supervised neural machine translation (NMT) is to learn to generate target sentences conditioned on the source inputs from a set of parallel sentence pairs, and thus produce a model capable of generalizing to unseen instances. However, it is commonly observed that the generalization performance of the model is highly influenced by the amount of parallel data used in training. Although data augmentation is widely used to enrich the training data, conventional methods with discrete manipulations fail to generate diverse and faithful training samples. In this paper, we present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT), which augments each training instance with an adjacency semantic region that could cover adequate variants of literal expression under the same meaning. We conduct extensive experiments on both rich-resource and low-resource settings involving various language pairs, including WMT14 English→{German,French}, NIST Chinese→English and multiple low-resource IWSLT translation tasks. The provided empirical evidences show that CsaNMT sets a new level of performance among existing augmentation techniques, improving on the state-of-the-art by a large margin. The core codes are contained in Appendix E.
Document-level MT models are still far from satisfactory. Existing work extend translation unit from single sentence to multiple sentences. However, study shows that when we further enlarge the translation unit to a whole document, supervised training of Transformer can fail. In this paper, we find such failure is not caused by overfitting, but by sticking around local minima during training. Our analysis shows that the increased complexity of target-to-source attention is a reason for the failure. As a solution, we propose G-Transformer, introducing locality assumption as an inductive bias into Transformer, reducing the hypothesis space of the attention from target to source. Experiments show that G-Transformer converges faster and more stably than Transformer, achieving new state-of-the-art BLEU scores for both nonpretraining and pre-training settings on three benchmark datasets.
A good translation should not only translate the original content semantically, but also incarnate personal traits of the original text. For a real-world neural machine translation (NMT) system, these user traits (e.g., topic preference, stylistic characteristics and expression habits) can be preserved in user behavior (e.g., historical inputs). However, current NMT systems marginally consider the user behavior due to: 1) the difficulty of modeling user portraits in zero-shot scenarios, and 2) the lack of user-behavior annotated parallel dataset. To fill this gap, we introduce a novel framework called user-driven NMT. Specifically, a cache-based module and a user-driven contrastive learning method are proposed to offer NMT the ability to capture potential user traits from their historical inputs under a zero-shot learning fashion. Furthermore, we contribute the first Chinese-English parallel corpus annotated with user behavior called UDT-Corpus. Experimental results confirm that the proposed user-driven NMT can generate user-specific translations.
A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
Document machine translation aims to translate the source sentence into the target language in the presence of additional contextual information. However, it typically suffers from a lack of doc-level bilingual data. To remedy this, here we propose a simple yet effective context-interactive pre-training approach, which targets benefiting from external large-scale corpora. The proposed model performs inter sentence generation to capture the cross-sentence dependency within the target document, and cross sentence translation to make better use of valuable contextual information. Comprehensive experiments illustrate that our approach can achieve state-of-the-art performance on three benchmark datasets, which significantly outperforms a variety of baselines.
This paper describes our work in the WMT 2021 Machine Translation using Terminologies Shared Task. We participate in the shared translation terminologies task in English to Chinese language pair. To satisfy terminology constraints on translation, we use a terminology data augmentation strategy based on Transformer model. We used tags to mark and add the term translations into the matched sentences. We created synthetic terms using phrase tables extracted from bilingual corpus to increase the proportion of term translations in training data. Detailed pre-processing and filtering on data, in-domain finetuning and ensemble method are used in our system. Our submission obtains competitive results in the terminology-targeted evaluation.
Quality Estimation, as a crucial step of quality control for machine translation, has been explored for years. The goal is to to investigate automatic methods for estimating the quality of machine translation results without reference translations. In this year’s WMT QE shared task, we utilize the large-scale XLM-Roberta pre-trained model and additionally propose several useful features to evaluate the uncertainty of the translations to build our QE system, named QEMind. The system has been applied to the sentence-level scoring task of Direct Assessment and the binary score prediction task of Critical Error Detection. In this paper, we present our submissions to the WMT 2021 QE shared task and an extensive set of experimental results have shown us that our multilingual systems outperform the best system in the Direct Assessment QE task of WMT 2020.
In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.
Recently, kNN-MT (Khandelwal et al., 2020) has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level k-nearest-neighbor (kNN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for k-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of the translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation. Our implementation is open-sourced at https://github.com/zhengxxn/UDA-KNN.
Zero-shot translation, directly translating between language pairs unseen in training, is a promising capability of multilingual neural machine translation (NMT). However, it usually suffers from capturing spurious correlations between the output language and language invariant semantics due to the maximum likelihood training objective, leading to poor transfer performance on zero-shot translation. In this paper, we introduce a denoising autoencoder objective based on pivot language into traditional training objective to improve the translation accuracy on zero-shot directions. The theoretical analysis from the perspective of latent variables shows that our approach actually implicitly maximizes the probability distributions for zero-shot directions. On two benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively eliminate the spurious correlations and significantly outperforms state-of-the-art methods with a remarkable performance. Our code is available at https://github.com/Victorwz/zs-nmt-dae.
Query translation (QT) serves as a critical factor in successful cross-lingual information retrieval (CLIR). Due to the lack of parallel query samples, neural-based QT models are usually optimized with synthetic data which are derived from large-scale monolingual queries. Nevertheless, such kind of pseudo corpus is mostly produced by a general-domain translation model, making it be insufficient to guide the learning of QT model. In this paper, we extend the data augmentation with a domain transfer procedure, thus to revise synthetic candidates to search-aware examples. Specifically, the domain transfer model is built upon advanced Transformer, in which layer coordination and mixed attention are exploited to speed up the refining process and leverage parameters from a pre-trained cross-lingual language model. In order to examine the effectiveness of the proposed method, we collected French-to-English and Spanish-to-English QT test sets, each of which consists of 10,000 parallel query pairs with careful manual-checking. Qualitative and quantitative analyses reveal that our model significantly outperforms strong baselines and the related domain transfer methods on both translation quality and retrieval accuracy.
Recent evidence reveals that Neural Machine Translation (NMT) models with deeper neural networks can be more effective but are difficult to train. In this paper, we present a MultiScale Collaborative (MSC) framework to ease the training of NMT models that are substantially deeper than those used previously. We explicitly boost the gradient back-propagation from top to bottom levels by introducing a block-scale collaboration mechanism into deep NMT models. Then, instead of forcing the whole encoder stack directly learns a desired representation, we let each encoder block learns a fine-grained representation and enhance it by encoding spatial dependencies using a context-scale collaboration. We provide empirical evidence showing that the MSC nets are easy to optimize and can obtain improvements of translation quality from considerably increased depth. On IWSLT translation tasks with three translation directions, our extremely deep models (with 72-layer encoders) surpass strong baselines by +2.2 +3.1 BLEU points. In addition, our deep MSC achieves a BLEU score of 30.56 on WMT14 English-to-German task that significantly outperforms state-of-the-art deep NMT models. We have included the source code in supplementary materials.
In this paper, we propose a new task of machine translation (MT), which is based on no parallel sentences but can refer to a ground-truth bilingual dictionary. Motivated by the ability of a monolingual speaker learning to translate via looking up the bilingual dictionary, we propose the task to see how much potential an MT system can attain using the bilingual dictionary and large scale monolingual corpora, while is independent on parallel sentences. We propose anchored training (AT) to tackle the task. AT uses the bilingual dictionary to establish anchoring points for closing the gap between source language and target language. Experiments on various language pairs show that our approaches are significantly better than various baselines, including dictionary-based word-by-word translation, dictionary-supervised cross-lingual word embedding transformation, and unsupervised MT. On distant language pairs that are hard for unsupervised MT to perform well, AT performs remarkably better, achieving performances comparable to supervised SMT trained on more than 4M parallel sentences.
Multilingual neural machine translation (NMT) has led to impressive accuracy improvements in low-resource scenarios by sharing common linguistic information across languages. However, the traditional multilingual model fails to capture the diversity and specificity of different languages, resulting in inferior performance compared with individual models that are sufficiently trained. In this paper, we incorporate a language-aware interlingua into the Encoder-Decoder architecture. The interlingual network enables the model to learn a language-independent representation from the semantic spaces of different languages, while still allowing for language-specific specialization of a particular language-pair. Experiments show that our proposed method achieves remarkable improvements over state-of-the-art multilingual NMT baselines and produces comparable performance with strong individual models.
Multi-Domain Neural Machine Translation (NMT) aims at building a single system that performs well on a range of target domains. However, along with the extreme diversity of cross-domain wording and phrasing style, the imperfections of training data distribution and the inherent defects of the current sequential learning process all contribute to making the task of multi-domain NMT very challenging. To mitigate these problems, we propose the Factorized Transformer, which consists of an in-depth factorization of the parameters of an NMT model, namely Transformer in this paper, into two categories: domain-shared ones that encode common cross-domain knowledge and domain-specific ones that are private for each constituent domain. We experiment with various designs of our model and conduct extensive validations on English to French open multi-domain dataset. Our approach achieves state-of-the-art performance and opens up new perspectives for multi-domain and open-domain applications.
Neural machine translation (NMT) has achieved great success due to the ability to generate high-quality sentences. Compared with human translations, one of the drawbacks of current NMT is that translations are not usually faithful to the input, e.g., omitting information or generating unrelated fragments, which inevitably decreases the overall quality, especially for human readers. In this paper, we propose a novel training strategy with a multi-task learning paradigm to build a faithfulness enhanced NMT model (named FEnmt). During the NMT training process, we sample a subset from the training set and translate them to get fragments that have been mistranslated. Afterward, the proposed multi-task learning paradigm is employed on both encoder and decoder to guide NMT to correctly translate these fragments. Both automatic and human evaluations verify that our FEnmt could improve translation quality by effectively reducing unfaithful translations.
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.
In this paper, we focus on the domain-specific translation with low resources, where in-domain parallel corpora are scarce or nonexistent. One common and effective strategy for this case is exploiting in-domain monolingual data with the back-translation method. However, the synthetic parallel data is very noisy because they are generated by imperfect out-of-domain systems, resulting in the poor performance of domain adaptation. To address this issue, we propose a novel iterative domain-repaired back-translation framework, which introduces the Domain-Repair (DR) model to refine translations in synthetic bilingual data. To this end, we construct corresponding data for the DR model training by round-trip translating the monolingual sentences, and then design the unified training framework to optimize paired DR and NMT models jointly. Experiments on adapting NMT models between specific domains and from the general domain to specific domains demonstrate the effectiveness of our proposed approach, achieving 15.79 and 4.47 BLEU improvements on average over unadapted models and back-translation.
Abstractive Sentence Summarization (ASSUM) targets at grasping the core idea of the source sentence and presenting it as the summary. It is extensively studied using statistical models or neural models based on the large-scale monolingual source-summary parallel corpus. But there is no cross-lingual parallel corpus, whose source sentence language is different to the summary language, to directly train a cross-lingual ASSUM system. We propose to solve this zero-shot problem by using resource-rich monolingual ASSUM system to teach zero-shot cross-lingual ASSUM system on both summary word generation and attention. This teaching process is along with a back-translation process which simulates source-summary pairs. Experiments on cross-lingual ASSUM task show that our proposed method is significantly better than pipeline baselines and previous works, and greatly enhances the cross-lingual performances closer to the monolingual performances.
Leveraging user-provided translation to constrain NMT has practical significance. Existing methods can be classified into two main categories, namely the use of placeholder tags for lexicon words and the use of hard constraints during decoding. Both methods can hurt translation fidelity for various reasons. We investigate a data augmentation method, making code-switched training data by replacing source phrases with their target translations. Our method does not change the MNT model or decoding algorithm, allowing the model to learn lexicon translations by copying source-side target words. Extensive experiments show that our method achieves consistent improvements over existing approaches, improving translation of constrained words without hurting unconstrained words.
We propose a contrastive attention mechanism to extend the sequence-to-sequence framework for abstractive sentence summarization task, which aims to generate a brief summary of a given source sentence. The proposed contrastive attention mechanism accommodates two categories of attention: one is the conventional attention that attends to relevant parts of the source sentence, the other is the opponent attention that attends to irrelevant or less relevant parts of the source sentence. Both attentions are trained in an opposite way so that the contribution from the conventional attention is encouraged and the contribution from the opponent attention is discouraged through a novel softmax and softmin functionality. Experiments on benchmark datasets show that, the proposed contrastive attention mechanism is more focused on the relevant parts for the summary than the conventional attention mechanism, and greatly advances the state-of-the-art performance on the abstractive sentence summarization task. We release the code at https://github.com/travel-go/ Abstractive-Text-Summarization.
In neural machine translation, a source sequence of words is encoded into a vector from which a target sequence is generated in the decoding phase. Differently from statistical machine translation, the associations between source words and their possible target counterparts are not explicitly stored. Source and target words are at the two ends of a long information processing procedure, mediated by hidden states at both the source encoding and the target decoding phases. This makes it possible that a source word is incorrectly translated into a target word that is not any of its admissible equivalent counterparts in the target language. In this paper, we seek to somewhat shorten the distance between source and target words in that procedure, and thus strengthen their association, by means of a method we term bridging source and target word embeddings. We experiment with three strategies: (1) a source-side bridging model, where source word embeddings are moved one step closer to the output target sequence; (2) a target-side bridging model, which explores the more relevant source word embeddings for the prediction of the target sequence; and (3) a direct bridging model, which directly connects source and target word embeddings seeking to minimize errors in the translation of ones by the others. Experiments and analysis presented in this paper demonstrate that the proposed bridging models are able to significantly improve quality of both sentence translation, in general, and alignment and translation of individual source words with target words, in particular.
Sentences in a well-formed text are connected to each other via various links to form the cohesive structure of the text. Current neural machine translation (NMT) systems translate a text in a conventional sentence-by-sentence fashion, ignoring such cross-sentence links and dependencies. This may lead to generate an incoherent target text for a coherent source text. In order to handle this issue, we propose a cache-based approach to modeling coherence for neural machine translation by capturing contextual information either from recently translated sentences or the entire document. Particularly, we explore two types of caches: a dynamic cache, which stores words from the best translation hypotheses of preceding sentences, and a topic cache, which maintains a set of target-side topical words that are semantically related to the document to be translated. On this basis, we build a new layer to score target words in these two caches with a cache-based neural model. Here the estimated probabilities from the cache-based neural model are combined with NMT probabilities into the final word prediction probabilities via a gating mechanism. Finally, the proposed cache-based neural model is trained jointly with NMT system in an end-to-end manner. Experiments and analysis presented in this paper demonstrate that the proposed cache-based model achieves substantial improvements over several state-of-the-art SMT and NMT baselines.
In this paper, we give an overview of the ICT statistical machine translation systems for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2007. In this year’s evaluation, we participated in the Chinese-English transcript translation task, and developed three systems based on different techniques: a formally syntax-based system Bruin, an extended phrase-based system Confucius and a linguistically syntax-based system Lynx. We will describe the models of these three systems, and compare their performance in detail. We set Bruin as our primary system, which ranks 2 among the 15 primary results according to the official evaluation results.