In the constant updates of the product dialogue systems, we need to retrain the natural language understanding (NLU) model as new data from the real users would be merged into the existing data accumulated in the last updates. Within the newly added data, new intents would emerge and might have semantic entanglement with the existing intents, e.g. new intents that are semantically too specific or generic are actually a subset or superset of some existing intents in the semantic space, thus impairing the robustness of the NLU model.As the first attempt to solve this problem, we setup a new benchmark consisting of 4 Dialogue Version Control dataSets (DialogVCS). We formulate the intent detection with imperfect data in the system update as a multi-label classification task with positive but unlabeled intents, which asks the models to recognize all the proper intents, including the ones with semantic entanglement, in the inference.We also propose comprehensive baseline models and conduct in-depth analyses for the benchmark, showing that the semantically entangled intents can be effectively recognized with an automatic workflow. Our code and dataset are available at https://github.com/Zefan-Cai/DialogVCS.
Executing computer programs described in natural language has long been a pursuit of computer science. With the advent of enhanced natural language understanding capabilities exhibited by large language models (LLMs), the path toward this goal has been illuminated. In this paper, we seek to examine the capacity of present-day LLMs to comprehend and execute algorithms outlined in natural language. We established an algorithm test set sourced from Introduction to Algorithm, a well-known textbook that contains many representative widely-used algorithms. To systematically assess LLMs’ code execution abilities, we selected 30 algorithms, generated 300 random-sampled instances in total, and evaluated whether popular LLMs can understand and execute these algorithms. Our findings reveal that LLMs, notably GPT-4, can effectively execute programs described in natural language, as long as no heavy numeric computation is involved. We believe our findings contribute to evaluating LLMs’ code execution abilities and would encourage further investigation and application for the computation power of LLMs.
kNN-MT presents a new paradigm for domain adaptation by building an external datastore, which usually saves all target language token occurrences in the parallel corpus. As a result, the constructed datastore is usually large and possibly redundant. In this paper, we investigate the interpretability issue of this approach: what knowledge does the NMT model need? We propose the notion of local correctness (LAC) as a new angle, which describes the potential translation correctness for a single entry and for a given neighborhood. Empirical study shows that our investigation successfully finds the conditions where the NMT model could easily fail and need related knowledge. Experiments on six diverse target domains and two language-pairs show that pruning according to local correctness brings a light and more explainable memory for kNN-MT domain adaptation.
Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
Recently, kNN-MT (Khandelwal et al., 2020) has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level k-nearest-neighbor (kNN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for k-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of the translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation. Our implementation is open-sourced at https://github.com/zhengxxn/UDA-KNN.
In multi-document summarization, a set of documents to be summarized is assumed to be on the same topic, known as the underlying topic in this paper. That is, the underlying topic can be collectively represented by all the documents in the set. Meanwhile, different documents may cover various different subtopics and the same subtopic can be across several documents. Inspired by topic model, the underlying topic of a document set can also be viewed as a collection of different subtopics of different importance. In this paper, we propose a summarization model called STDS. The model generates the underlying topic representation from both document view and subtopic view in parallel. The learning objective is to minimize the distance between the representations learned from the two views. The contextual information is encoded through a hierarchical RNN architecture. Sentence salience is estimated in a hierarchical way with subtopic salience and relative sentence salience, by considering the contextual information. Top ranked sentences are then extracted as a summary. Note that the notion of subtopic enables us to bring in additional information (e.g. comments to news articles) that is helpful for document summarization. Experimental results show that the proposed solution outperforms state-of-the-art methods on benchmark datasets.