Yong Xu


2024

pdf bib
QueryAgent: A Reliable and Efficient Reasoning Framework with Environmental Feedback based Self-Correction
Xiang Huang | Sitao Cheng | Shanshan Huang | Jiayu Shen | Yong Xu | Chaoyun Zhang | Yuzhong Qu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Employing Large Language Models (LLMs) for semantic parsing has achieved remarkable success. However, we find existing methods fall short in terms of reliability and efficiency when hallucinations are encountered. In this paper, we address these challenges with a framework called QueryAgent, which solves a question step-by-step and performs stepwise self-correction. We introduce an environmental feedback-based self-correction method called ERASER. Unlike traditional approaches, ERASER leverages rich environmental feedback in the intermediate steps to perform selective and differentiated self-correction only when necessary. Experimental results demonstrate that QueryAgent notably outperforms all previous few-shot methods using only one example on GrailQA and GraphQ by 5.7 and 15.0 points. Furthermore, our approach exhibits superiority in terms of efficiency, including run-time, query overhead, and API invocation costs. By leveraging ERASER, we further improve another baseline (i.e., AgentBench) by approximately 10 points, validating the strong transferability of our approach.

pdf bib
Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation
Ruomeng Ding | Chaoyun Zhang | Lu Wang | Yong Xu | Minghua Ma | Wei Zhang | Si Qin | Saravan Rajmohan | Qingwei Lin | Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL 2024

This paper introduce a novel thought prompting approach called ”Everything of Thoughts” (XoT) for Large Language Models (LLMs) to defy the law of ”Penrose triangle” of existing thought paradigms, to achieve three key perspectives in thought generation simultaneously: performance, efficiency, and flexibility. XoT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge and planning capability into thoughts, thereby enhancing LLMs’ decision-making capabilities. Through the MCTS-LLM collaborative thought revision framework, XoT autonomously produces high-quality comprehensive cognitive mappings with minimal LLM interactions. Additionally, XoT empowers LLMs to utilize flexible cognitive mappings for solving problems with multiple solutions.We evaluate XoT on several challenging problem-solving tasks, including Game of 24, 8-Puzzle, and Pocket Cube. Our results demonstrate that XoT significantly outperforms existing approaches in various dimensions, showcasing its remarkable proficiency in addressing complex problems across diverse domains. The data and code are available at https://github.com/microsoft/Everything-of-Thoughts-XoT.

pdf bib
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
Sitao Cheng | Ziyuan Zhuang | Yong Xu | Fangkai Yang | Chaoyun Zhang | Xiaoting Qin | Xiang Huang | Ling Chen | Qingwei Lin | Dongmei Zhang | Saravan Rajmohan | Qi Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on https://aka.ms/readi.

pdf bib
Unsupervised Sign Language Translation and Generation
Zhengsheng Guo | Zhiwei He | Wenxiang Jiao | Xing Wang | Rui Wang | Kehai Chen | Zhaopeng Tu | Yong Xu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Motivated by the success of unsupervised neural machine translation (UNMT), we introduce an unsupervised sign language translation and generation network (USLNet), which learns from abundant single-modality (text and video) data without parallel sign language data. USLNet comprises two main components: single-modality reconstruction modules (text and video) that rebuild the input from its noisy version in the same modality and cross-modality back-translation modules (text-video-text and video-text-video) that reconstruct the input from its noisy version in the different modality using back-translation procedure. Unlike the single-modality back-translation procedure in text-based UNMT, USLNet faces the cross-modality discrepancy in feature representation, in which the length and the feature dimension mismatch between text and video sequences. We propose a sliding window method to address the issues of aligning variable-length text with video sequences. To our knowledge, USLNet is the first unsupervised sign language translation and generation model capable of generating both natural language text and sign language video in a unified manner. Experimental results on the BBC-Oxford Sign Language dataset and Open-Domain American Sign Language dataset reveal that USLNet achieves competitive results compared to supervised baseline models, indicating its effectiveness in sign language translation and generation.

pdf bib
AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework
Xiang Li | Zhenyu Li | Chen Shi | Yong Xu | Qing Du | Mingkui Tan | Jun Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The task of financial analysis primarily encompasses two key areas: stock trend prediction and the corresponding financial question answering. Currently, machine learning and deep learning algorithms (ML&DL) have been widely applied for stock trend predictions, leading to significant progress. However, these methods fail to provide reasons for predictions, lacking interpretability and reasoning processes. Also, they can not integrate textual information such as financial news or reports. Meanwhile, large language models (LLM) have remarkable textual understanding and generation ability. But due to the scarcity of financial training datasets and limited integration with real-time knowledge, LLM still suffer from hallucinations and unable to keep up with the latest information. To tackle these challenges, we first release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data. It has positive impact on training LLM for completing financial analysis. We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task, which integrates retrieval-augmented generation (RAG) techniques. Extensive experiments are conducted to demonstrate the effectiveness of our framework on financial analysis.

2016

pdf bib
Lecture bilingue augmentée par des alignements multi-niveaux (Augmenting bilingual reading with alignment information)
François Yvon | Yong Xu | Marianna Apidianaki | Clément Pillias | Cubaud Pierre
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 5 : Démonstrations

Le travail qui a conduit à cette démonstration combine des outils de traitement des langues multilingues, en particulier l’alignement automatique, avec des techniques de visualisation et d’interaction. Il vise à proposer des pistes pour le développement d’outils permettant de lire simultanément les différentes versions d’un texte disponible en plusieurs langues, avec des applications en lecture de loisir ou en lecture professionnelle.

pdf bib
Novel elicitation and annotation schemes for sentential and sub-sentential alignments of bitexts
Yong Xu | François Yvon
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Resources for evaluating sentence-level and word-level alignment algorithms are unsatisfactory. Regarding sentence alignments, the existing data is too scarce, especially when it comes to difficult bitexts, containing instances of non-literal translations. Regarding word-level alignments, most available hand-aligned data provide a complete annotation at the level of words that is difficult to exploit, for lack of a clear semantics for alignment links. In this study, we propose new methodologies for collecting human judgements on alignment links, which have been used to annotate 4 new data sets, at the sentence and at the word level. These will be released online, with the hope that they will prove useful to evaluate alignment software and quality estimation tools for automatic alignment. Keywords: Parallel corpora, Sentence Alignments, Word Alignments, Confidence Estimation

pdf bib
TransRead: Designing a Bilingual Reading Experience with Machine Translation Technologies
François Yvon | Yong Xu | Marianna Apidianaki | Clément Pillias | Pierre Cubaud
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

2015

pdf bib
Sentence alignment for literary texts: The state-of-the-art and beyond
Yong Xu | Aurélien Max | François Yvon
Linguistic Issues in Language Technology, Volume 12, 2015 - Literature Lifts up Computational Linguistics

Literary works are becoming increasingly available in electronic formats, thus quickly transforming editorial processes and reading habits. In the context of the global enthusiasm for multilingualism, the rapid spread of e-book readers, such as Amazon Kindle R or Kobo Touch R , fosters the development of a new generation of reading tools for bilingual books. In particular, literary works, when available in several languages, offer an attractive perspective for self-development or everyday leisure reading, but also for activities such as language learning, translation or literary studies. An important issue in the automatic processing of multilingual e-books is the alignment between textual units. Alignment could help identify corresponding text units in different languages, which would be particularly beneficial to bilingual readers and translation professionals. Computing automatic alignments for literary works, however, is a task more challenging than in the case of better behaved corpora such as parliamentary proceedings or technical manuals. In this paper, we revisit the problem of computing high-quality. alignment for literary works. We first perform a large-scale evaluation of automatic alignment for literary texts, which provides a fair assessment of the actual difficulty of this task. We then introduce a two-pass approach, based on a maximum entropy model. Experimental results for novels available in English and French or in English and Spanish demonstrate the effectiveness of our method.

2002

pdf bib
基於詞彙語義的百科辭典知識提取實驗 (An Experiment on Knowledge Extraction from an Encyclopedia Based on Lexicon Semantics) [In Chinese]
Rou Song | Yong Xu
International Journal of Computational Linguistics & Chinese Language Processing, Volume 7, Number 2, August 2002: Special Issue on Computational Chinese Lexical Semantics