Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can’t help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions with the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.
While large language models (LLMs) excel in many domains, their complexity and scale challenge deployment in resource-limited environments. Current compression techniques, such as parameter pruning, often fail to effectively utilize the knowledge from pruned parameters. To address these challenges, we propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA), a novel approach that uses manifold learning and the Information Bottleneck (IB) measure to merge similar layers, reducing model size while preserving essential performance. We evaluate MKA on multiple benchmark datasets and various LLMs. Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods. Moreover, when coupled with quantization, MKA delivers even greater compression. Specifically, on the MMLU dataset using the Llama3-8B model, MKA achieves a compression ratio of 43.75% with a minimal performance decrease of only 2.82%. The proposed MKA method offers a resource-efficient and performance-preserving model compression technique for LLMs. We make our code available at https://github.com/SempraETY/Pruning-via-Merging
Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material. Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge. However, current unlearning paradigms are mired in vague forgetting boundaries, often erasing knowledge indiscriminately. In this work, we introduce KnowUnDo, a benchmark containing copyrighted content and user privacy domains to evaluate if the unlearning process inadvertently erases essential knowledge. Our findings indicate that existing unlearning methods often suffer from excessive unlearning. To address this, we propose a simple yet effective method, MemFlex, which utilizes gradient information to precisely target and unlearn sensitive parameters. Experimental results show that MemFlex is superior to existing methods in both precise knowledge unlearning and general knowledge retaining of LLMs.
Chain-of-Thought (CoT) prompting combined with large language models (LLM) has shown great potential in improving performance on challenging reasoning tasks. While understanding why CoT prompting is effective is crucial for the application and improvement of CoT prompting, few studies have addressed this issue. Besides, almost no prior work has conducted theoretical analysis on CoT prompting in the context of black-box models. In this paper, we approach the analysis of CoT prompting in black-box LLMs from an information-theoretic perspective. Specifically, we propose a new metric, EPVI (Estimated Pointwise V-Information), which extends the concept of pointwise V-information to black-box models, quantifying the label-relevant new information introduced by CoT prompting beyond the pre-existing information in the input. Based on this, we conduct a series of experiments at both the task and instance levels to analyze CoT prompting, demonstrating that the effectiveness of CoT prompting can be attributed to its capacity to influence the difficulty of model inference by augmenting or reducing the model-usable information. Furthermore, we show that selecting high-quality demonstrations of CoT reasoning based on EPVI can improve the downstream performance of reasoning tasks.
Event detection (ED) seeks to discover and classify event instances in plain texts. Previous methods for ED typically adopt supervised learning, requiring fully labeled and high-quality training data. However, in a real-world application, we may not obtain clean training data but only partially labeled one, which could substantially impede the learning process. In this work, we conduct a seminal study for learning with partial annotations for ED.We propose a new trigger localization formulation using contrastive learning to distinguish ground-truth triggers from contexts, showing a decent robustness for addressing partial annotation noise. Impressively, in an extreme scenario where more than 90% of events are unlabeled, our approach achieves an F1 score of over 60%.In addition, we re-annotate and make available two fully annotated subsets of ACE 2005 to serve as an unbiased benchmark for event detection. We hope our approach and data will inspire future studies on this vital yet understudied problem.
Intent detection, which estimates diverse intents behind user utterances, is an essential component of task-oriented dialogue systems. Previous intent detection models are usually trained offline, which can only handle predefined intent classes. In the real world, new intents may keep challenging deployed models. For example, with the prevalence of the COVID-19 pandemic, users may pose various issues related to the pandemic to conversational systems, which brings many new intents. A general intent detection model should be intelligent enough to continually learn new data and recognize new arriving intent classes. Therefore, this work explores Class Lifelong Learning for Intent Detection (CLL-ID), where the model continually learns new intent classes from new data while avoiding catastrophic performance degradation on old data. To this end, we propose a novel lifelong learning method, called Structure Consolidation Networks (SCN), which consists of structure-based retrospection and contrastive knowledge distillation to handle the problems of expression diversity and class imbalance in the CLL-ID task. In addition to formulating the new task, we construct 3 benchmarks based on 8 intent detection datasets. Experimental results demonstrate the effectiveness of SCN, which significantly outperforms previous lifelong learning methods on the three benchmarks.
Conventional approaches to relation extraction can only recognize predefined relation types. In the real world, new or out-of-scope relation types may keep challenging the deployed models. In this paper, we formalize such a challenging problem as Novel Relation Detection (NRD), which aims to discover potential new relation types based on training samples of known relations. To this end, we construct two NRD datasets and exhaustively investigate a variety of out-of-scope detection methods. We further propose an effective NRD method that utilizes multi-strategy self-supervised learning to handle the problem of shallow semantic similarity in the NRD task. Experimental results demonstrate the effectiveness of our method, which significantly outperforms previous state-of-the-art methods on both datasets.
Although In-Context Learning has proven effective across a broad array of tasks, its efficiency is noticeably influenced by the selection of demonstrations. Existing methods tend to select different demonstrations for each test instance, which is time-consuming and poses limitations in practical scenarios. Therefore, this study aims to address the challenge of selecting a representative subset of in-context demonstrations that can effectively prompt different test instances in a specific task. We propose that this representative subset should be of high quality and diversity. Our empirical analyses confirm that demonstrations that meet these criteria can indeed bolster model performance. To satisfy these criteria, this paper further introduces a two-stage Determinantal Point Process (DPP) method designed to incorporate both quality and diversity in the process of demonstration selection, thereby obtaining representative in-context demonstrations. Through comprehensive experimentation, we have confirmed the efficacy of our proposed method, paving the way for more practical and effective In-Context Learning.
In this paper, we propose CogKGE, a knowledge graph embedding (KGE) toolkit, which aims to represent multi-source and heterogeneous knowledge. For multi-source knowledge, unlike existing methods that mainly focus on entity-centric knowledge, CogKGE also supports the representations of event-centric, commonsense and linguistic knowledge. For heterogeneous knowledge, besides structured triple facts, CogKGE leverages additional unstructured information, such as text descriptions, node types and temporal information, to enhance the meaning of embeddings. Designing CogKGE aims to provide a unified programming framework for KGE tasks and a series of knowledge representations for downstream tasks. As a research framework, CogKGE consists of five parts, including core, data, model, knowledge and adapter module. As a knowledge discovery toolkit, CogKGE provides pre-trained embedders to discover new facts, cluster entities and check facts. Furthermore, we construct two benchmark datasets for further research on multi-source heterogeneous KGE tasks: EventKG240K and CogNet360K. We also release an online system to discover knowledge visually. Source code, datasets and pre-trained embeddings are publicly available at GitHub, with a short instruction video.
This paper describes our approach to develop a complex named entity recognition system in SemEval 2022 Task 11: MultiCoNER Multilingual Complex Named Entity Recognition,Track 9 - Chinese. In this task, we need to identify the entity boundaries and categorylabels for the six identified categories of CW,LOC, PER, GRP, CORP, and PORD.The task focuses on detecting semantically ambiguous and complex entities in short and low-context settings. We constructed a hybrid system based on Roberta-large model with three training mechanisms and a series of data gugmentation.Three training mechanisms include adversarial training, Child-Tuning training, and continued pre-training. The core idea of the hybrid system is to improve the performance of the model in complex environments by introducing more domain knowledge through data augmentation and continuing pre-training domain adaptation of the model. Our proposed method in this paper achieves a macro-F1 of 0.797 on the final test set, ranking second.
In this paper, we aim to explore an uncharted territory, which is Chinese multimodal named entity recognition (NER) with both textual and acoustic contents. To achieve this, we construct a large-scale human-annotated Chinese multimodal NER dataset, named CNERTA. Our corpus totally contains 42,987 annotated sentences accompanying by 71 hours of speech data. Based on this dataset, we propose a family of strong and representative baseline models, which can leverage textual features or multimodal features. Upon these baselines, to capture the natural monotonic alignment between the textual modality and the acoustic modality, we further propose a simple multimodal multitask model by introducing a speech-to-text alignment auxiliary task. Through extensive experiments, we observe that: (1) Progressive performance boosts as we move from unimodal to multimodal, verifying the necessity of integrating speech clues into Chinese NER. (2) Our proposed model yields state-of-the-art (SoTA) results on CNERTA, demonstrating its effectiveness. For further research, the annotated dataset is publicly available at http://github.com/DianboWork/CNERTA.
Document-level event extraction (DEE) is indispensable when events are described throughout a document. We argue that sentence-level extractors are ill-suited to the DEE task where event arguments always scatter across sentences and multiple events may co-exist in a document. It is a challenging task because it requires a holistic understanding of the document and an aggregated ability to assemble arguments across multiple sentences. In this paper, we propose an end-to-end model, which can extract structured events from a document in a parallel manner. Specifically, we first introduce a document-level encoder to obtain the document-aware representations. Then, a multi-granularity non-autoregressive decoder is used to generate events in parallel. Finally, to train the entire model, a matching loss function is proposed, which can bootstrap a global optimization. The empirical results on the widely used DEE dataset show that our approach significantly outperforms current state-of-the-art methods in the challenging DEE task. Code will be available at https://github.com/HangYang-NLP/DE-PPN.
CogNet is a knowledge base that integrates three types of knowledge: linguistic knowledge, world knowledge and commonsense knowledge. In this paper, we propose an information extraction toolkit, called CogIE, which is a bridge connecting raw texts and CogNet. CogIE has three features: versatile, knowledge-grounded and extensible. First, CogIE is a versatile toolkit with a rich set of functional modules, including named entity recognition, entity typing, entity linking, relation extraction, event extraction and frame-semantic parsing. Second, as a knowledge-grounded toolkit, CogIE can ground the extracted facts to CogNet and leverage different types of knowledge to enrich extracted results. Third, for extensibility, owing to the design of three-tier architecture, CogIE is not only a plug-and-play toolkit for developers but also an extensible programming framework for researchers. We release an open-access online system to visually extract information from texts. Source code, datasets and pre-trained models are publicly available at GitHub, with a short instruction video.
Humans can distinguish new categories very efficiently with few examples, largely due to the fact that human beings can leverage knowledge obtained from relevant tasks. However, deep learning based text classification model tends to struggle to achieve satisfactory performance when labeled data are scarce. Inspired by human intelligence, we propose to introduce external knowledge into few-shot learning to imitate human knowledge. A novel parameter generator network is investigated to this end, which is able to use the external knowledge to generate different metrics for different tasks. Armed with this network, similar tasks can use similar metrics while different tasks use different metrics. Through experiments, we demonstrate that our method outperforms the SoTA few-shot text classification models.
In relation extraction, distant supervision is widely used to automatically label a large-scale training dataset by aligning a knowledge base with unstructured text. Most existing studies in this field have assumed there is a great deal of centralized unstructured text. However, in practice, texts are usually distributed on different platforms and cannot be centralized due to privacy restrictions. Therefore, it is worthwhile to investigate distant supervision in the federated learning paradigm, which decouples the training of the model from the need for direct access to raw texts. However, overcoming label noise of distant supervision becomes more difficult in federated settings, because texts containing the same entity pair scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The key of this framework is a multiple instance learning based denoising method that is able to select reliable sentences via cross-platform collaboration. Various experiments on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.
The task of knowledge base population (KBP) aims to discover facts about entities from texts and expand a knowledge base with these facts. Previous studies shape end-to-end KBP as a machine translation task, which is required to convert unordered fact into a sequence according to a pre-specified order. However, the facts stated in a sentence are unordered in essence. In this paper, we formulate end-to-end KBP as a direct set generation problem, avoiding considering the order of multiple facts. To solve the set generation problem, we propose networks featured by transformers with non-autoregressive parallel decoding. Unlike previous approaches that use an autoregressive decoder to generate facts one by one, the proposed networks can directly output the final set of facts in one shot. Furthermore, to train the networks, we also design a set-based loss that forces unique predictions via bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in fact order, the proposed bipartite matching loss is invariant to any permutation of predictions. Benefiting from getting rid of the burden of predicting the order of multiple facts, our proposed networks achieve state-of-the-art (SoTA) performance on two benchmark datasets.
Question answering over dialogue, a specialized machine reading comprehension task, aims to comprehend a dialogue and to answer specific questions. Despite many advances, existing approaches for this task did not consider dialogue structure and background knowledge (e.g., relationships between speakers). In this paper, we introduce a new approach for the task, featured by its novelty in structuring dialogue and integrating background knowledge for reasoning. Specifically, different from previous “structure-less” approaches, our method organizes a dialogue as a “relational graph”, using edges to represent relationships between entities. To encode this relational graph, we devise a relational graph convolutional network (R-GCN), which can traverse the graph’s topological structure and effectively encode multi-relational knowledge for reasoning. The extensive experiments have justified the effectiveness of our approach over competitive baselines. Moreover, a deeper analysis shows that our model is better at tackling complex questions requiring relational reasoning and defending adversarial attacks with distracting sentences.
Unlike other domains, medical texts are inevitably accompanied by private information, so sharing or copying these texts is strictly restricted. However, training a medical relation extraction model requires collecting these privacy-sensitive texts and storing them on one machine, which comes in conflict with privacy protection. In this paper, we propose a privacy-preserving medical relation extraction model based on federated learning, which enables training a central model with no single piece of private local data being shared or exchanged. Though federated learning has distinct advantages in privacy protection, it suffers from the communication bottleneck, which is mainly caused by the need to upload cumbersome local parameters. To overcome this bottleneck, we leverage a strategy based on knowledge distillation. Such a strategy uses the uploaded predictions of ensemble local models to train the central model without requiring uploading local parameters. Experiments on three publicly available medical relation extraction datasets demonstrate the effectiveness of our method.
The lack of word boundaries information has been seen as one of the main obstacles to develop a high performance Chinese named entity recognition (NER) system. Fortunately, the automatically constructed lexicon contains rich word boundaries information and word semantic information. However, integrating lexical knowledge in Chinese NER tasks still faces challenges when it comes to self-matched lexical words as well as the nearest contextual lexical words. We present a Collaborative Graph Network to solve these challenges. Experiments on various datasets show that our model not only outperforms the state-of-the-art (SOTA) results, but also achieves a speed that is six to fifteen times faster than that of the SOTA model.