Dinesh Manocha


2024

pdf bib
ABEX: Data Augmentation for Low-Resource NLU via Expanding Abstract Descriptions
Sreyan Ghosh | Utkarsh Tyagi | Sonal Kumar | Chandra Kiran Evuru | Ramaneswaran S | S Sakshi | Dinesh Manocha
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present ABEX, a novel and effective generative data augmentation methodology for low-resource Natural Language Understanding (NLU) tasks. ABEX is based on ABstract-and-EXpand, a novel paradigm for generating diverse forms of an input document – we first convert a document into its concise, abstract description and then generate new documents based on expanding the resultant abstraction. To learn the task of expanding abstract descriptions, we first train BART on a large-scale synthetic dataset with abstract-document pairs. Next, to generate abstract descriptions for a document, we propose a simple, controllable, and training-free method based on editing AMR graphs. ABEX brings the best of both worlds: by expanding from abstract representations, it preserves the original semantic properties of the documents, like style and meaning, thereby maintaining alignment with the original label and data distribution. At the same time, the fundamental process of elaborating on abstract descriptions facilitates diverse generations. We demonstrate the effectiveness of ABEX on 4 NLU tasks spanning 12 datasets and 4 low-resource settings. ABEX outperforms all our baselines qualitatively with improvements of 0.04% - 38.8%. Qualitatively, ABEX outperforms all prior methods from literature in terms of context and length diversity.

pdf bib
GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities
Sreyan Ghosh | Sonal Kumar | Ashish Seth | Chandra Kiran Reddy Evuru | Utkarsh Tyagi | S Sakshi | Oriol Nieto | Ramani Duraiswami | Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84% and demonstrates state-of-the-art performance on deductive reasoning and hallucination evaluation benchmarks. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning capabilities.

pdf bib
EH-MAM: Easy-to-Hard Masked Acoustic Modeling for Self-Supervised Speech Representation Learning
Ashish Seth | Ramaneswaran Selvakumar | S Sakshi | Sonal Kumar | Sreyan Ghosh | Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In this paper, we present EH-MAM (Easy-to-Hard adaptive Masked Acoustic Modeling), a novel self-supervised learning approach for speech representation learning. In contrast to the prior methods that use random masking schemes for Masked Acoustic Modeling (MAM), we introduce a novel selective and adaptive masking strategy. Specifically, during SSL training, we progressively introduce harder regions to the model for reconstruction. Our approach automatically selects hard regions and is built on the observation that the reconstruction loss of individual frames in MAM can provide natural signals to judge the difficulty of solving the MAM pre-text task for that frame. To identify these hard regions, we employ a teacher model that first predicts the frame-wise losses and then decides which frames to mask. By learning to create challenging problems, such as identifying harder frames and solving them simultaneously, the model is able to learn more effective representations and thereby acquire a more comprehensive understanding of the speech. Quantitatively, EH-MAM outperforms several state-of-the-art baselines across various low-resource speech recognition and SUPERB benchmarks by 5%-10%. Additionally, we conduct a thorough analysis to show that the regions masked by EH-MAM effectively capture useful context across speech frames.

pdf bib
DocEdit-v2: Document Structure Editing Via Multimodal LLM Grounding
Manan Suri | Puneet Mathur | Franck Dernoncourt | Rajiv Jain | Vlad I Morariu | Ramit Sawhney | Preslav Nakov | Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Document structure editing involves manipulating localized textual, visual, and layout components in document images based on the user’s requests. Past works have shown that multimodal grounding of user requests in the document image and identifying the accurate structural components and their associated attributes remain key challenges for this task. To address these, we introduce the DocEditAgent, a novel framework that performs end-to-end document editing by leveraging Large Multimodal Models (LMMs). It consists of three novel components – (1) Doc2Command to simultaneously localize edit regions of interest (RoI) and disambiguate user edit requests into edit commands. (2) LLM-based Command Reformulation prompting to tailor edit commands originally intended for specialized software into edit instructions suitable for generalist LMMs. (3) Moreover, DocEditAgent processes these outputs via Large Multimodal Models like GPT-4V and Gemini, to parse the document layout, execute edits on grounded Region of Interest (RoI), and generate the edited document image. Extensive experiments on the DocEdit dataset show that DocEditAgent significantly outperforms strong baselines on edit command generation (2-33%), RoI bounding box detection (12-31%), and overall document editing (1-12%) tasks.

pdf bib
IntCoOp: Interpretability-Aware Vision-Language Prompt Tuning
Soumya Suvra Ghosal | Samyadeep Basu | Soheil Feizi | Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Image-text contrastive models such as CLIP learn transferable and robust representations for zero-shot transfer to a variety of downstream tasks. However, to obtain strong downstream performances, prompts need to be carefully curated, which can be a tedious engineering task. To address the issue of manual prompt engineering, prompt-tuning is used where a set of contextual vectors are learned by leveraging information from the training data. Despite their effectiveness, existing prompt-tuning frameworks often lack interpretability, thus limiting their ability to understand the compositional nature of images. In this work, we first identify that incorporating compositional attributes (e.g., a “green” tree frog) in the design of manual prompts can significantly enhance image-text alignment scores. Building upon this observation, we propose a novel and interpretable prompt-tuning method named IntCoOp, which learns to jointly align attribute-level inductive biases and class embeddings during prompt-tuning. To assess the effectiveness of our approach, we evaluate IntCoOp across two representative tasks in a few-shot learning setup: generalization to novel classes, and unseen domain shifts. Through extensive experiments across 10 downstream datasets on CLIP, we find that introducing attribute-level inductive biases leads to superior performance against state-of-art prompt tuning frameworks. Notably, in a 16-shot setup, IntCoOp improves CoOp by 7.35% in average performance across 10 diverse datasets.

pdf bib
CoDa: Constrained Generation based Data Augmentation for Low-Resource NLP
Chandra Kiran Evuru | Sreyan Ghosh | Sonal Kumar | Ramaneswaran S | Utkarsh Tyagi | Dinesh Manocha
Findings of the Association for Computational Linguistics: NAACL 2024

We present CoDa (**Co**nstrained Generation based **Da**ta Augmentation), a controllable, effective, and *training-free* data augmentation technique for low-resource (data-scarce) NLP. Our approach is based on prompting off-the-shelf instruction-following Large Language Models (LLMs) for generating text that satisfies a set of constraints. Precisely, we extract a set of simple constraints from every instance in the low-resource dataset and verbalize them to prompt an LLM to generate novel and diverse training instances. Our findings reveal that synthetic data that follows simple constraints in the downstream dataset act as highly effective augmentations, and CoDa can achieve this without intricate decoding-time constrained generation techniques or fine-tuning with complex algorithms that eventually make the model biased toward the small number of training instances. Additionally, CoDa is the first framework that provides users explicit control over the augmentation generation process, thereby also allowing easy adaptation to several domains. We demonstrate the effectiveness of CoDa across 11 datasets spanning 3 tasks and 3 low-resource settings. CoDa outperforms all our baselines, qualitatively and quantitatively, with improvements of 0.12%-7.19%. Code is available.

pdf bib
ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations
Sreyan Ghosh | Chandra Kiran Evuru | Sonal Kumar | Utkarsh Tyagi | S Sakshi | Sanjoy Chowdhury | Dinesh Manocha
Findings of the Association for Computational Linguistics: ACL 2024

Neural image classifiers can often learn to make predictions by overly relying on non-predictive features that are spuriously correlated with the class labels in the training data. This leads to poor performance in real-world atypical scenarios where such features are absent. This paper presents ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval), a simple yet effective solution for supplementing the training dataset with images without spurious features, for robust learning against spurious correlations via better generalization. ASPIRE, guided by language at various steps, can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set. Precisely, we employ LLMs to first extract foreground and background features from textual descriptions of an image, followed by advanced language-guided image editing to discover the features that are spuriously correlated with the class label. Finally, we personalize a text-to-image generation model using the edited images to generate diverse in-domain images without spurious features. ASPIRE is complementary to all prior robust training methods in literature, and we demonstrate its effectiveness across 4 datasets and 9 baselines and show that ASPIRE improves the worst-group classification accuracy of prior methods by 1% - 38%. We also contribute a novel test set for the challenging Hard ImageNet dataset.

pdf bib
TAME-RD: Text Assisted Replication of Image Multi-Adjustments for Reverse Designing
Pooja Guhan | Uttaran Bhattacharya | Somdeb Sarkhel | Vahid Azizi | Xiang Chen | Saayan Mitra | Aniket Bera | Dinesh Manocha
Findings of the Association for Computational Linguistics: ACL 2024

Given a source and its edited version performed based on human instructions in natural language, how do we extract the underlying edit operations, to automatically replicate similar edits on other images? This is the problem of reverse designing, and we present TAME-RD, a model to solve this problem. TAME-RD automatically learns from the complex interplay of image editing operations and the natural language instructions to learn fully specified edit operations. It predicts both the underlying image edit operations as discrete categories and their corresponding parameter values in the continuous space.We accomplish this by mapping together the contextual information from the natural language text and the structural differences between the corresponding source and edited images using the concept of pre-post effect. We demonstrate the efficiency of our network through quantitative evaluations on multiple datasets. We observe improvements of 6-10% on various accuracy metrics and 1.01X-4X on the RMSE score and the concordance correlation coefficient for the corresponding parameter values on the benchmark GIER dataset. We also introduce I-MAD, a new two-part dataset: I-MAD-Dense, a collection of approximately 100K source and edited images, together with automatically generated text instructions and annotated edit operations, and I-MAD-Pro, consisting of about 1.6K source and edited images, together with text instructions and annotated edit operations provided by professional editors. On our dataset, we observe absolute improvements of 1-10% on the accuracy metrics and 1.14X–5X on the RMSE score.

pdf bib
AutoHallusion: Automatic Generation of Hallucination Benchmarks for Vision-Language Models
Xiyang Wu | Tianrui Guan | Dianqi Li | Shuaiyi Huang | Xiaoyu Liu | Xijun Wang | Ruiqi Xian | Abhinav Shrivastava | Furong Huang | Jordan Lee Boyd-Graber | Tianyi Zhou | Dinesh Manocha
Findings of the Association for Computational Linguistics: EMNLP 2024

Large vision-language models (LVLMs) are prone to hallucinations, where certain contextual cues in an image can trigger the language module to produce overconfident and incorrect reasoning about abnormal or hypothetical objects. While some benchmarks have been developed to investigate LVLM hallucinations, they often rely on hand-crafted corner cases whose failure patterns may not generalize well. Additionally, fine-tuning on these examples could undermine their validity. To address this, we aim to scale up the number of cases through an automated approach, reducing human bias in crafting such corner cases. This motivates the development of AutoHallusion, the first automated benchmark generation approach that employs several key strategies to create a diverse range of hallucination examples. Our generated visual-question pairs pose significant challenges to LVLMs, requiring them to overcome contextual biases and distractions to arrive at correct answers. AutoHallusion enables us to create new benchmarks at the minimum cost and thus overcomes the fragility of hand-crafted benchmarks. It also reveals common failure patterns and reasons, providing key insights to detect, avoid, or control hallucinations. Comprehensive evaluations of top-tier LVLMs, e.g., GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5, show a 97.7% and 98.7% success rate of hallucination induction on synthetic and real-world datasets of AutoHallusion, paving the way for a long battle against hallucinations. The codebase and data can be accessed at https://github.com/wuxiyang1996/AutoHallusion

pdf bib
DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation
Puneet Mathur | Zhe Liu | Ke Li | Yingyi Ma | Gil Karen | Zeeshan Ahmed | Dinesh Manocha | Xuedong Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We propose DOC-RAG - Domain-distributed Co-occurrence Retrieval Augmentation for ASR language model personalization aiming to improve the automatic speech recognition of rare word patterns in unseen domains. Our approach involves contrastively training a document retrieval module to rank external knowledge domains based on their semantic similarity with respect to the input query. We further use n-gram co-occurrence distribution to recognize rare word patterns associated with specific domains. We aggregate the next word probability distribution based on the relative importance of different domains. Extensive experiments on three user-specific speech-to-text tasks for meetings, TED talks, and financial earnings calls show that DOC-RAG significantly outperforms strong baselines with an 8-15% improvement in terms of perplexity and a 4-7% reduction in terms of Word Error Rates in various settings.

pdf bib
DocScript: Document-level Script Event Prediction
Puneet Mathur | Vlad I. Morariu | Aparna Garimella | Franck Dernoncourt | Jiuxiang Gu | Ramit Sawhney | Preslav Nakov | Dinesh Manocha | Rajiv Jain
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We present a novel task of document-level script event prediction, which aims to predict the next event given a candidate list of narrative events in long-form documents. To enable this, we introduce DocSEP, a challenging dataset in two new domains - contractual documents and Wikipedia articles, where timeline events may be paragraphs apart and may require multi-hop temporal and causal reasoning. We benchmark existing baselines and present a novel architecture called DocScript to learn sequential ordering between events at the document scale. Our experimental results on the DocSEP dataset demonstrate that learning longer-range dependencies between events is a key challenge and show that contemporary LLMs such as ChatGPT and FlanT5 struggle to solve this task, indicating their lack of reasoning abilities for understanding causal relationships and temporal sequences within long texts.

pdf bib
Saliency-Aware Interpolative Augmentation for Multimodal Financial Prediction
Samyak Jain | Parth Chhabra | Atula Tejaswi Neerkaje | Puneet Mathur | Ramit Sawhney | Shivam Agarwal | Preslav Nakov | Sudheer Chava | Dinesh Manocha
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Predicting price variations of financial instruments for risk modeling and stock trading is challenging due to the stochastic nature of the stock market. While recent advancements in the Financial AI realm have expanded the scope of data and methods they use, such as textual and audio cues from financial earnings calls, limitations exist. Most datasets are small, and show domain distribution shifts due to the nature of their source, suggesting the exploration for data augmentation for robust augmentation strategies such as Mixup. To tackle such challenges in the financial domain, we propose SH-Mix: Saliency-guided Hierarchical Mixup augmentation technique for multimodal financial prediction tasks. SH-Mix combines multi-level embedding mixup strategies based on the contribution of each modality and context subsequences. Through extensive quantitative and qualitative experiments on financial earnings and conference call datasets consisting of text and speech, we show that SH-Mix outperforms state-of-the-art methods by 3-7%. Additionally, we show that SH-Mix is generalizable across different modalities and models.

pdf bib
Can LLM’s Generate Human-Like Wayfinding Instructions? Towards Platform-Agnostic Embodied Instruction Synthesis
Vishnu Sashank Dorbala | Sanjoy Chowdhury | Dinesh Manocha
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

We present a novel approach to automatically synthesize “wayfinding instructions” for an embodied robot agent. In contrast to prior approaches that are heavily reliant on human-annotated datasets designed exclusively for specific simulation platforms, our algorithm uses in-context learning to condition an LLM to generate instructions using just a few references. Using an LLM-based Visual Question Answering strategy, we gather detailed information about the environment which is used by the LLM for instruction synthesis. We implement our approach on multiple simulation platforms including Matterport3D, AI Habitat and ThreeDWorld, thereby demonstrating its platform-agnostic nature. We subjectively evaluate our approach via a user study and observe that 83.3% of users find the synthesized instructions accurately capture the details of the environment and show characteristics similar to those of human-generated instructions. Further, we conduct zero-shot navigation with multiple approaches on the REVERIE dataset using the generated instructions, and observe very close correlation with the baseline on standard success metrics (< 1% change in SR), quantifying the viability of generated instructions in replacing human-annotated data. We finally discuss the applicability of our approach in enabling a generalizable evaluation of embodied navigation policies. To the best of our knowledge, ours is the first LLM-driven approach capable of generating “human-like” instructions in a platform-agnostic manner, without training.

pdf bib
Do Vision-Language Models Understand Compound Nouns?
Sonal Kumar | Sreyan Ghosh | S Sakshi | Utkarsh Tyagi | Dinesh Manocha
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Open-vocabulary vision-language models (VLMs) like CLIP, trained using contrastive loss, have emerged as a promising new paradigm for text-to-image retrieval. However, do VLMs understand compound nouns (CNs) (e.g., *lab coat*) as well as they understand nouns (e.g., *lab*)? We curate Compun, a novel benchmark with 400 unique and commonly used CNs, to evaluate the effectiveness of VLMs in interpreting CNs. The Compun benchmark challenges a VLM for text-to-image retrieval where, given a text prompt with a CN, the task is to select the correct image that shows the CN among a pair of distractor images that show the constituent nouns that make up the CN. Next, we perform an in-depth analysis to highlight CLIPs’ limited understanding of certain types of CNs. Finally, we present an alternative framework that moves beyond hand-written templates for text prompts widely used by CLIP-like models. We employ a Large Language Model to generate multiple diverse captions that include the CN as an object in the scene described by the caption. Our proposed method improves CN understanding of CLIP by 8.25% on Compun. Code and benchmark are available.

2023

pdf bib
ACLM: A Selective-Denoising based Generative Data Augmentation Approach for Low-Resource Complex NER
Sreyan Ghosh | Utkarsh Tyagi | Manan Suri | Sonal Kumar | Ramaneswaran S | Dinesh Manocha
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Complex Named Entity Recognition (NER) is the task of detecting linguistically complex named entities in low-context text. In this paper, we present ACLM Attention-map aware keyword selection for Conditional Language Model fine-tuning), a novel data augmentation approach based on conditional generation, to address the data scarcity problem in low-resource complex NER. ACLM alleviates the context-entity mismatch issue, a problem existing NER data augmentation techniques suffer from and often generates incoherent augmentations by placing complex named entities in the wrong context. ACLM builds on BART and is optimized on a novel text reconstruction or denoising task - we use selective masking (aided by attention maps) to retain the named entities and certain keywords in the input sentence that provide contextually relevant additional knowledge or hints about the named entities. Compared with other data augmentation strategies, ACLM can generate more diverse and coherent augmentations preserving the true word sense of complex entities in the sentence. We demonstrate the effectiveness of ACLM both qualitatively and quantitatively on monolingual, cross-lingual, and multilingual complex NER across various low-resource settings. ACLM outperforms all our neural baselines by a significant margin (1%-36%). In addition, we demonstrate the application of ACLM to other domains that suffer from data scarcity (e.g., biomedical). In practice, ACLM generates more effective and factual augmentations for these domains than prior methods.

pdf bib
CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a Context Synergized Hyperbolic Network
Sreyan Ghosh | Manan Suri | Purva Chiniya | Utkarsh Tyagi | Sonal Kumar | Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The tremendous growth of social media users interacting in online conversations has led to significant growth in hate speech affecting people from various demographics. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a context synergized neural network that explicitly incorporates user- and conversational-context for detecting implicit hate speech in online conversations. CoSyn introduces novel ways to encode these external contexts and employs a novel context interaction mechanism that clearly captures the interplay between them, making independent assessments of the amounts of information to be retrieved from these noisy contexts. Additionally, it carries out all these operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn on 6 hate speech datasets and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%. We make our code available.

pdf bib
DALE: Generative Data Augmentation for Low-Resource Legal NLP
Sreyan Ghosh | Chandra Kiran Reddy Evuru | Sonal Kumar | S Ramaneswaran | S Sakshi | Utkarsh Tyagi | Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present DALE, a novel and effective generative Data Augmentation framework for low-resource LEgal NLP. DALE addresses the challenges existing frameworks pose in generating effective data augmentations of legal documents - legal language, with its specialized vocabulary and complex semantics, morphology, and syntax, does not benefit from data augmentations that merely rephrase the source sentence. To address this, DALE, built on an Encoder-Decoder Language Model, is pre-trained on a novel unsupervised text denoising objective based on selective masking - our masking strategy exploits the domain-specific language characteristics of templatized legal documents to mask collocated spans of text. Denoising these spans help DALE acquire broad legal knowledge and develop the ability to generate coherent and diverse augmentations with novel contexts. Finally, DALE performs conditional generation to generate synthetic augmentations for low-resource Legal NLP tasks. We demonstrate the effectiveness of DALE on 13 datasets spanning 6 tasks and 4 low-resource settings. DALE outperforms all our baselines, including LLMs, qualitatively and quantitatively, with absolute improvements of 1%-50%.

pdf bib
APoLLo : Unified Adapter and Prompt Learning for Vision Language Models
Sanjoy Chowdhury | Sayan Nag | Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The choice of input text prompt plays a critical role in the performance of Vision-Language Pretrained (VLP) models such as CLIP. We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models. Our method is designed to substantially improve the generalization capabilities of VLP models when they are fine-tuned in a few-shot setting. We introduce trainable cross-attention-based adapter layers in conjunction with vision and language encoders to strengthen the alignment between the two modalities. We enforce consistency between the respective encoder branches (receiving augmented inputs) to prevent overfitting in downstream tasks. Our method is evaluated on three representative tasks: generalization to novel classes, cross-dataset evaluation, and unseen domain shifts. In practice, APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.

pdf bib
PersonaLM: Language Model Personalization via Domain-distributed Span Aggregated K-Nearest N-gram Retrieval Augmentation
Puneet Mathur | Zhe Liu | Ke Li | Yingyi Ma | Gil Keren | Zeeshan Ahmed | Dinesh Manocha | Xuedong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

We introduce PersonaLM - Domain-distributed Span-Aggregated K-nearest N-gram retrieval augmentation to improve language modeling for Automatic Speech Recognition (ASR) personalization. PersonaLM leverages contextually similar n-gram word frequencies for recognizing rare word patterns associated with unseen domains. It aggregates the next-word probability distribution based on the relative importance of different domains to the input query. To achieve this, we propose a Span Aggregated Group-Contrastive Neural (SCAN) retriever that learns to rank external domains/users by utilizing a group-wise contrastive span loss that pulls together span representations belonging to the same group while pushing away spans from unrelated groups in the semantic space. We propose ASAP benchmark for ASR LM personalization that consists of three user-specific speech-to-text tasks for meetings, TED talks, and financial earnings calls. Extensive experiments show that PersonaLM significantly outperforms strong baselines with a 10-16% improvement in perplexity and a 5-8% reduction in Word Error Rates on popular Wikitext-103, UserLibri, and our ASAP dataset. We further demonstrate the usefulness of the SCAN retriever for improving user-personalized text generation and classification by retrieving relevant context for zero-shot prompting and few-shot fine-tuning of LLMs by 7-12% on the LAMP benchmark.

2022

pdf bib
DocInfer: Document-level Natural Language Inference using Optimal Evidence Selection
Puneet Mathur | Gautam Kunapuli | Riyaz Bhat | Manish Shrivastava | Dinesh Manocha | Maneesh Singh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present DocInfer - a novel, end-to-end Document-level Natural Language Inference model that builds a hierarchical document graph enriched through inter-sentence relations (topical, entity-based, concept-based), performs paragraph pruning using the novel SubGraph Pooling layer, followed by optimal evidence selection based on REINFORCE algorithm to identify the most important context sentences for a given hypothesis. Our evidence selection mechanism allows it to transcend the input length limitation of modern BERT-like Transformer models while presenting the entire evidence together for inferential reasoning. We show this is an important property needed to reason on large documents where the evidence may be fragmented and located arbitrarily far from each other. Extensive experiments on popular corpora - DocNLI, ContractNLI, and ConTRoL datasets, and our new proposed dataset called CaseHoldNLI on the task of legal judicial reasoning, demonstrate significant performance gains of 8-12% over SOTA methods. Our ablation studies validate the impact of our model. Performance improvement of 3-6% on annotation-scarce downstream tasks of fact verification, multiple-choice QA, and contract clause retrieval demonstrates the usefulness of DocInfer beyond primary NLI tasks.

pdf bib
DocFin: Multimodal Financial Prediction and Bias Mitigation using Semi-structured Documents
Puneet Mathur | Mihir Goyal | Ramit Sawhney | Ritik Mathur | Jochen Leidner | Franck Dernoncourt | Dinesh Manocha
Findings of the Association for Computational Linguistics: EMNLP 2022

Financial prediction is complex due to the stochastic nature of the stock market. Semi-structured financial documents present comprehensive financial data in tabular formats, such as earnings, profit-loss statements, and balance sheets, and can often contain rich technical analysis along with a textual discussion of corporate history, and management analysis, compliance, and risks. Existing research focuses on the textual and audio modalities of financial disclosures from company conference calls to forecast stock volatility and price movement, but ignores the rich tabular data available in financial reports. Moreover, the economic realm is still plagued with a severe under-representation of various communities spanning diverse demographics, gender, and native speakers. In this work, we show that combining tabular data from financial semi-structured documents with text transcripts and audio recordings not only improves stock volatility and price movement prediction by 5-12% but also reduces gender bias caused due to audio-based neural networks by over 30%.

pdf bib
DocTime: A Document-level Temporal Dependency Graph Parser
Puneet Mathur | Vlad Morariu | Verena Kaynig-Fittkau | Jiuxiang Gu | Franck Dernoncourt | Quan Tran | Ani Nenkova | Dinesh Manocha | Rajiv Jain
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce DocTime - a novel temporal dependency graph (TDG) parser that takes as input a text document and produces a temporal dependency graph. It outperforms previous BERT-based solutions by a relative 4-8% on three datasets from modeling the problem as a graph network with path-prediction loss to incorporate longer range dependencies. This work also demonstrates how the TDG graph can be used to improve the downstream tasks of temporal questions answering and NLI by a relative 4-10% with a new framework that incorporates the temporal dependency graph into the self-attention layer of Transformer models (Time-transformer). Finally, we develop and evaluate on a new temporal dependency graph dataset for the domain of contractual documents, which has not been previously explored in this setting.

2021

pdf bib
TIMERS: Document-level Temporal Relation Extraction
Puneet Mathur | Rajiv Jain | Franck Dernoncourt | Vlad Morariu | Quan Hung Tran | Dinesh Manocha
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

We present TIMERS - a TIME, Rhetorical and Syntactic-aware model for document-level temporal relation classification in the English language. Our proposed method leverages rhetorical discourse features and temporal arguments from semantic role labels, in addition to traditional local syntactic features, trained through a Gated Relational-GCN. Extensive experiments show that the proposed model outperforms previous methods by 5-18% on the TDDiscourse, TimeBank-Dense, and MATRES datasets due to our discourse-level modeling.