LLM-driven dialog systems are used in a diverse set of applications, ranging from healthcare to customer service. However, given their generalization capability, it is difficult to ensure that these chatbots stay within the boundaries of the specialized domains, potentially resulting in inaccurate information and irrelevant responses. This paper introduces an unsupervised approach for automatically inducing domain-specific dialog flows that can be used to constrain LLM-based chatbots. We introduce two variants of dialog flow based on the availability of in-domain conversation instances. Through human and automatic evaluation over 24 dialog domains, we demonstrate that our high-quality data-guided dialog flows achieve better domain coverage, thereby overcoming the need for extensive manual crafting of such flows.
We present the MASSIVE dataset–Multilingual Amazon Slu resource package (SLURP) for Slot-filling, Intent classification, and Virtual assistant Evaluation. MASSIVE contains 1M realistic, parallel, labeled virtual assistant utterances spanning 51 languages, 18 domains, 60 intents, and 55 slots. MASSIVE was created by tasking professional translators to localize the English-only SLURP dataset into 50 typologically diverse languages from 29 genera. We also present modeling results on XLM-R and mT5, including exact match accuracy, intent classification accuracy, and slot-filling F1 score. We have released our dataset, modeling code, and models publicly.
In conversational AI agents, Query Rewriting (QR) plays a crucial role in reducing user frictions and satisfying their daily demands. User frictions are caused by various reasons, such as errors in the conversational AI system, users’ accent or their abridged language. In this work, we present a novel Constrained Generation Framework (CGF) for query rewriting at both global and personalized levels. It is based on the encoder-decoder framework, where the encoder takes the query and its previous dialogue turns as the input to form a context-enhanced representation, and the decoder uses constrained decoding to generate the rewrites based on the pre-defined global or personalized constrained decoding space. Extensive offline and online A/B experiments show that the proposed CGF significantly boosts the query rewriting performance.
Interactive robots navigating photo-realistic environments need to be trained to effectively leverage and handle the dynamic nature of dialogue in addition to the challenges underlying vision-and-language navigation (VLN). In this paper, we present VISITRON, a multi-modal Transformer-based navigator better suited to the interactive regime inherent to Cooperative Vision-and-Dialog Navigation (CVDN). VISITRON is trained to: i) identify and associate object-level concepts and semantics between the environment and dialogue history, ii) identify when to interact vs. navigate via imitation learning of a binary classification head. We perform extensive pre-training and fine-tuning ablations with VISITRON to gain empirical insights and improve performance on CVDN. VISITRON’s ability to identify when to interact leads to a natural generalization of the game-play mode introduced by Roman et al. (2020) for enabling the use of such models in different environments. VISITRON is competitive with models on the static CVDN leaderboard and attains state-of-the-art performance on the Success weighted by Path Length (SPL) metric.
Inspired by recent work in meta-learning and generative teaching networks, we propose a framework called Generative Conversational Networks, in which conversational agents learn to generate their own labelled training data (given some seed data) and then train themselves from that data to perform a given task. We use reinforcement learning to optimize the data generation process where the reward signal is the agent’s performance on the task. The task can be any language-related task, from intent detection to full task-oriented conversations. In this work, we show that our approach is able to generalise from seed data and performs well in limited data and limited computation settings, with significant gains for intent detection and slot tagging across multiple datasets: ATIS, TOD, SNIPS, and Restaurants8k. We show an average improvement of 35% in intent detection and 21% in slot tagging over a baseline model trained from the seed data. We also conduct an analysis of the novelty of the generated data and provide generated examples for intent detection, slot tagging, and non-goal oriented conversations.
This work introduces Focused-Variation Network (FVN), a novel model to control language generation. The main problems in previous controlled language generation models range from the difficulty of generating text according to the given attributes, to the lack of diversity of the generated texts. FVN addresses these issues by learning disjoint discrete latent spaces for each attribute inside codebooks, which allows for both controllability and diversity, while at the same time generating fluent text. We evaluate FVN on two text generation datasets with annotated content and style, and show state-of-the-art performance as assessed by automatic and human evaluations.
Some of the major challenges in training conversational agents include the lack of large-scale data of real-world complexity, defining appropriate evaluation measures, and managing meaningful conversations across many topics over long periods of time. Moreover, most works tend to assume that the conversational agent’s environment is stationary, a somewhat strong assumption. To remove this assumption and overcome the lack of data, we take a step away from the traditional training pipeline and model the conversation as a stochastic collaborative game. Each agent (player) has a role (“assistant”, “tourist”, “eater”, etc.) and their own objectives, and can only interact via language they generate. Each agent, therefore, needs to learn to operate optimally in an environment with multiple sources of uncertainty (its own LU and LG, the other agent’s LU, Policy, and LG). In this work, we present the first complete attempt at concurrently training conversational agents that communicate only via self-generated language and show that they outperform supervised and deep learning baselines.
This paper proposes a novel end-to-end architecture for task-oriented dialogue systems. It is based on a simple and practical yet very effective sequence-to-sequence approach, where language understanding and state tracking tasks are modeled jointly with a structured copy-augmented sequential decoder and a multi-label decoder for each slot. The policy engine and language generation tasks are modeled jointly following that. The copy-augmented sequential decoder deals with new or unknown values in the conversation, while the multi-label decoder combined with the sequential decoder ensures the explicit assignment of values to slots. On the generation part, slot binary classifiers are used to improve performance. This architecture is scalable to real-world scenarios and is shown through an empirical evaluation to achieve state-of-the-art performance on both the Cambridge Restaurant dataset and the Stanford in-car assistant dataset.
In this work, we present a hybrid learning method for training task-oriented dialogue systems through online user interactions. Popular methods for learning task-oriented dialogues include applying reinforcement learning with user feedback on supervised pre-training models. Efficiency of such learning method may suffer from the mismatch of dialogue state distribution between offline training and online interactive learning stages. To address this challenge, we propose a hybrid imitation and reinforcement learning method, with which a dialogue agent can effectively learn from its interaction with users by learning from human teaching and feedback. We design a neural network based task-oriented dialogue agent that can be optimized end-to-end with the proposed learning method. Experimental results show that our end-to-end dialogue agent can learn effectively from the mistake it makes via imitation learning from user teaching. Applying reinforcement learning with user feedback after the imitation learning stage further improves the agent’s capability in successfully completing a task.
End-to-end neural models show great promise towards building conversational agents that are trained from data and on-line experience using supervised and reinforcement learning. However, these models require a large corpus of dialogues to learn effectively. For goal-oriented dialogues, such datasets are expensive to collect and annotate, since each task involves a separate schema and database of entities. Further, the Wizard-of-Oz approach commonly used for dialogue collection does not provide sufficient coverage of salient dialogue flows, which is critical for guaranteeing an acceptable task completion rate in consumer-facing conversational agents. In this paper, we study a recently proposed approach for building an agent for arbitrary tasks by combining dialogue self-play and crowd-sourcing to generate fully-annotated dialogues with diverse and natural utterances. We discuss the advantages of this approach for industry applications of conversational agents, wherein an agent can be rapidly bootstrapped to deploy in front of users and further optimized via interactive learning from actual users of the system.
Spoken Language Understanding (SLU) is a key component of goal oriented dialogue systems that would parse user utterances into semantic frame representations. Traditionally SLU does not utilize the dialogue history beyond the previous system turn and contextual ambiguities are resolved by the downstream components. In this paper, we explore novel approaches for modeling dialogue context in a recurrent neural network (RNN) based language understanding system. We propose the Sequential Dialogue Encoder Network, that allows encoding context from the dialogue history in chronological order. We compare the performance of our proposed architecture with two context models, one that uses just the previous turn context and another that encodes dialogue context in a memory network, but loses the order of utterances in the dialogue history. Experiments with a multi-domain dialogue dataset demonstrate that the proposed architecture results in reduced semantic frame error rates.