Nadi Tomeh


2024

pdf bib
Transductive Legal Judgment Prediction Combining BERT Embeddings with Delaunay-Based GNNs
Hugo Attali | Nadi Tomeh
Proceedings of the Natural Legal Language Processing Workshop 2024

This paper presents a novel approach to legal judgment prediction by combining BERT embeddings with a Delaunay-based Graph Neural Network (GNN). Unlike inductive methods that classify legal documents independently, our transductive approach models the entire document set as a graph, capturing both contextual and relational information. This method significantly improves classification accuracy by enabling effective label propagation across connected documents. Evaluated on the Swiss-Judgment-Prediction (SJP) dataset, our model outperforms established baselines, including larger models with cross-lingual training and data augmentation techniques, while maintaining efficiency with minimal computational overhead.

pdf bib
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer
Urchade Zaratiana | Nadi Tomeh | Pierre Holat | Thierry Charnois
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications. Traditional NER models are effective but limited to a set of predefined entity types. In contrast, Large Language Models (LLMs) can extract arbitrary entities through natural language instructions, offering greater flexibility. However, their size and cost, particularly for those accessed via APIs like ChatGPT, make them impractical in resource-limited scenarios. In this paper, we introduce a compact NER model trained to identify any type of entity. Leveraging a bidirectional transformer encoder, our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of LLMs. Through comprehensive testing, GLiNER demonstrate strong performance, outperforming both ChatGPT and fine-tuned LLMs in zero-shot evaluations on various NER benchmarks.

pdf bib
Cross-Dialectal Transfer and Zero-Shot Learning for Armenian Varieties: A Comparative Analysis of RNNs, Transformers and LLMs
Chahan Vidal-Gorène | Nadi Tomeh | Victoria Khurshudyan
Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities

This paper evaluates lemmatization, POS-tagging, and morphological analysis for four Armenian varieties: Classical Armenian, Modern Eastern Armenian, Modern Western Armenian, and the under-documented Getashen dialect. It compares traditional RNN models, multilingual models like mDeBERTa, and large language models (ChatGPT) using supervised, transfer learning, and zero/few-shot learning approaches. The study finds that RNN models are particularly strong in POS-tagging, while large language models demonstrate high adaptability, especially in handling previously unseen dialect variations. The research highlights the value of cross-variational and in-context learning for enhancing NLP performance in low-resource languages, offering crucial insights into model transferability and supporting the preservation of endangered dialects.

pdf bib
Proceedings of The Second Arabic Natural Language Processing Conference
Nizar Habash | Houda Bouamor | Ramy Eskander | Nadi Tomeh | Ibrahim Abu Farha | Ahmed Abdelali | Samia Touileb | Injy Hamed | Yaser Onaizan | Bashar Alhafni | Wissam Antoun | Salam Khalifa | Hatem Haddad | Imed Zitouni | Badr AlKhamissi | Rawan Almatham | Khalil Mrini
Proceedings of The Second Arabic Natural Language Processing Conference

pdf bib
Enhancing Few-Shot Topic Classification with Verbalizers. a Study on Automatic Verbalizer and Ensemble Methods
Quang Anh Nguyen | Nadi Tomeh | Mustapha Lebbah | Thierry Charnois | Hanene Azzag | Santiago Cordoba Muñoz
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

As pretrained language model emerge and consistently develop, prompt-based training has become a well-studied paradigm to improve the exploitation of models for many natural language processing tasks. Furthermore, prompting demonstrates great performance compared to conventional fine-tuning in scenarios with limited annotated data, such as zero-shot or few-shot situations. Verbalizers are crucial in this context, as they help interpret masked word distributions generated by language models into output predictions. This study introduces a benchmarking approach to assess three common baselines of verbalizers for topic classification in few-shot learning scenarios. Additionally, we find that increasing the number of label words for automatic label word searching enhances model performance. Moreover, we investigate the effectiveness of template assembling with various aggregation strategies to develop stronger classifiers that outperform models trained with individual templates. Our approach achieves comparable results to prior research while using significantly fewer resources. Our code is available at https://github.com/quang-anh-nguyen/verbalizer_benchmark.git.

pdf bib
Information Extraction with Differentiable Beam Search on Graph RNNs
Niama El Khbir | Nadi Tomeh | Thierry Charnois
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Information extraction (IE) from text documents is an important NLP task that includes entity, relation, and event extraction. These tasks are often addressed jointly as a graph generation problem, where entities and event triggers represent nodes and where relations and event arguments represent edges. Most existing systems use local classifiers for nodes and edges, trained using cross-entropy loss, and employ inference strategies such as beam search to approximate the optimal graph structure. These approaches typically suffer from exposure bias due to the discrepancy between training and decoding. In this paper, we tackle this problem by casting graph generation as auto-regressive sequence labeling and making its training aware of the decoding procedure by using a differentiable version of beam search. We evaluate the effectiveness of our approach through extensive experiments conducted on the ACE05 and ConLL04 datasets across diverse languages. Our experimental findings affirm that our model outperforms its non-decoding-aware version for all datasets employed. Furthermore, we conduct ablation studies that emphasize the effectiveness of aligning training and inference. Additionally, we introduce a novel quantification of exposure bias within this context, providing valuable insights into the functioning of our model.

2023

pdf bib
Filtered Semi-Markov CRF
Urchade Zaratiana | Nadi Tomeh | Niama El Khbir | Pierre Holat | Thierry Charnois
Findings of the Association for Computational Linguistics: EMNLP 2023

Semi-Markov CRF has been proposed as an alternative to the traditional Linear Chain CRF for text segmentation tasks such as Named Entity Recognition (NER). Unlike CRF, which treats text segmentation as token-level prediction, Semi-CRF considers segments as the basic unit, making it more expressive. However, Semi-CRF suffers from two major drawbacks: (1) quadratic complexity over sequence length, as it operates on every span of the input sequence, and (2) inferior performance compared to CRF for sequence labeling tasks like NER. In this paper, we introduce Filtered Semi-Markov CRF, a variant of Semi-CRF that addresses these issues by incorporating a filtering step to eliminate irrelevant segments, reducing complexity and search space. Our approach is evaluated on several NER benchmarks, where it outperforms both CRF and Semi-CRF while being significantly faster. The implementation of our method is available on Github.

pdf bib
Attention sur les spans pour l’analyse syntaxique en constituants
Nicolas Floquet | Nadi Tomeh | Joseph Le Roux | Thierry Charnois
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 2 : travaux de recherche originaux -- articles courts

Nous présentons une extension aux analyseurs syntaxiques en constituants neuronaux modernes qui consiste à doter les constituants potentiels d’une représentation vectorielle affinée en fonction du contexte par plusieurs applications successives d’un module de type transformer efficace (pooling par attention puis transformation non-linéaire).Nous appliquons cette extension à l’analyseur CRF de Yu Zhang & Al.Expérimentalement, nous testons cette extension sur deux corpus (PTB et FTB) avec ou sans vecteurs de mots dynamiques: cette extension permet d’avoir un gain constant dans toutes les configurations.

pdf bib
Sélection globale de segments pour la reconnaissance d’entités nommées
Urchade Zaratiana | Niama El Khbir | Pierre Holat | Nadi Tomeh | Thierry Charnois
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

La reconnaissance d’entités nommées est une tâche importante en traitement automatique du langage naturel avec des applications dans de nombreux domaines. Dans cet article, nous décrivons une nouvelle approche pour la reconnaissance d’entités nommées, dans laquelle nous produisons un ensemble de segmentations en maximisant un score global. Pendant l’entraînement, nous optimisons notre modèle en maximisant la probabilité de la segmentation correcte. Pendant l’inférence, nous utilisons la programmation dynamique pour sélectionner la meilleure segmentation avec une complexité linéaire. Nous prouvons que notre approche est supérieure aux modèles champs de Markov conditionnels et semi-CMC pour la reconnaissance d’entités nommées.

pdf bib
Proceedings of ArabicNLP 2023
Hassan Sawaf | Samhaa El-Beltagy | Wajdi Zaghouani | Walid Magdy | Ahmed Abdelali | Nadi Tomeh | Ibrahim Abu Farha | Nizar Habash | Salam Khalifa | Amr Keleg | Hatem Haddad | Imed Zitouni | Khalil Mrini | Rawan Almatham
Proceedings of ArabicNLP 2023

pdf bib
Cross-Dialectal Named Entity Recognition in Arabic
Niama El Elkhbir | Urchade Zaratiana | Nadi Tomeh | Thierry Charnois
Proceedings of ArabicNLP 2023

In this paper, we study the transferability of Named Entity Recognition (NER) models between Arabic dialects. This question is important because the available manually-annotated resources are not distributed equally across dialects: Modern Standard Arabic (MSA) is much richer than other dialects for which little to no datasets exist. How well does a NER model, trained on MSA, perform on other dialects? To answer this question, we construct four datasets. The first is an MSA dataset extracted from the ACE 2005 corpus. The others are datasets for Egyptian, Morocan and Syrian which we manually annotate following the ACE guidelines. We train a span-based NER model on top of a pretrained language model (PLM) encoder on the MSA data and study its performance on the other datasets in zero-shot settings. We study the performance of multiple PLM encoders from the literature and show that they achieve acceptable performance with no annotation effort. Our annotations and models are publicly available (https://github.com/niamaelkhbir/Arabic-Cross-Dialectal-NER).

pdf bib
LIPN at WojoodNER shared task: A Span-Based Approach for Flat and Nested Arabic Named Entity Recognition
Niama El Khbir | Urchade Zaratiana | Nadi Tomeh | Thierry Charnois
Proceedings of ArabicNLP 2023

The Wojood Named Entity Recognition (NER) shared task introduces a comprehensive Arabic NER dataset encompassing both flat and nested entity tasks, addressing the challenge of limited Arabic resources. In this paper, we present our team LIPN approach to addressing the two subtasks of WojoodNER SharedTask. We frame NER as a span classification problem. We employ a pretrained language model for token representations and neural network classifiers. We use global decoding for flat NER and a greedy strategy for nested NER. Our model secured the first position in flat NER and the fourth position in nested NER during the competition, with an F-score of 91.96 and 92.45 respectively. Our code is publicly available (https://github.com/niamaelkhbir/LIPN-at-WojoodSharedTask).

2022

pdf bib
GNNer: Reducing Overlapping in Span-based NER Using Graph Neural Networks
Urchade Zaratiana | Nadi Tomeh | Pierre Holat | Thierry Charnois
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

There are two main paradigms for Named Entity Recognition (NER): sequence labelling and span classification. Sequence labelling aims to assign a label to each word in an input text using, for example, BIO (Begin, Inside and Outside) tagging, while span classification involves enumerating all possible spans in a text and classifying them into their labels. In contrast to sequence labelling, unconstrained span-based methods tend to assign entity labels to overlapping spans, which is generally undesirable, especially for NER tasks without nested entities. Accordingly, we propose GNNer, a framework that uses Graph Neural Networks to enrich the span representation to reduce the number of overlapping spans during prediction. Our approach reduces the number of overlapping spans compared to strong baseline while maintaining competitive metric performance. Code is available at https://github.com/urchade/GNNer.

pdf bib
Proceedings of the Workshop on Processing Language Variation: Digital Armenian (DigitAm) within the 13th Language Resources and Evaluation Conference
Victoria Khurshudyan | Nadi Tomeh | Damien Nouvel | Anaid Donabedian | Chahan Vidal-Gorene
Proceedings of the Workshop on Processing Language Variation: Digital Armenian (DigitAm) within the 13th Language Resources and Evaluation Conference

pdf bib
Named Entity Recognition as Structured Span Prediction
Urchade Zaratiana | Nadi Tomeh | Pierre Holat | Thierry Charnois
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)

Named Entity Recognition (NER) is an important task in Natural Language Processing with applications in many domains. While the dominant paradigm of NER is sequence labelling, span-based approaches have become very popular in recent times but are less well understood. In this work, we study different aspects of span-based NER, namely the span representation, learning strategy, and decoding algorithms to avoid span overlap. We also propose an exact algorithm that efficiently finds the set of non-overlapping spans that maximizes a global score, given a list of candidate spans. We performed our study on three benchmark NER datasets from different domains. We make our code publicly available at https://github.com/urchade/span-structured-prediction.

pdf bib
Global Span Selection for Named Entity Recognition
Urchade Zaratiana | Niama El khbir | Pierre Holat | Nadi Tomeh | Thierry Charnois
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)

Named Entity Recognition (NER) is an important task in Natural Language Processing with applications in many domains. In this paper, we describe a novel approach to named entity recognition, in which we output a set of spans (i.e., segmentations) by maximizing a global score. During training, we optimize our model by maximizing the probability of the gold segmentation. During inference, we use dynamic programming to select the best segmentation under a linear time complexity. We prove that our approach outperforms CRF and semi-CRF models for Named Entity Recognition. We will make our code publicly available.

pdf bib
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)
Houda Bouamor | Hend Al-Khalifa | Kareem Darwish | Owen Rambow | Fethi Bougares | Ahmed Abdelali | Nadi Tomeh | Salam Khalifa | Wajdi Zaghouani
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

pdf bib
AraBART: a Pretrained Arabic Sequence-to-Sequence Model for Abstractive Summarization
Moussa Kamal Eddine | Nadi Tomeh | Nizar Habash | Joseph Le Roux | Michalis Vazirgiannis
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

Like most natural language understanding and generation tasks, state-of-the-art models for summarization are transformer-based sequence-to-sequence architectures that are pretrained on large corpora. While most existing models focus on English, Arabic remains understudied. In this paper we propose AraBART, the first Arabic model in which the encoder and the decoder are pretrained end-to-end, based on BART. We show that AraBART achieves the best performance on multiple abstractive summarization datasets, outperforming strong baselines including a pretrained Arabic BERT-based model, multilingual BART, Arabic T5, and a multilingual T5 model. AraBART is publicly available.

pdf bib
ArabIE: Joint Entity, Relation and Event Extraction for Arabic
Niama El Khbir | Nadi Tomeh | Thierry Charnois
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

Previous work on Arabic information extraction has mainly focused on named entity recognition and very little work has been done on Arabic relation extraction and event recognition. Moreover, modeling Arabic data for such tasks is not straightforward because of the morphological richness and idiosyncrasies of the Arabic language. We propose in this article the first neural joint information extraction system for the Arabic language.

2021

pdf bib
Proceedings of the Sixth Arabic Natural Language Processing Workshop
Nizar Habash | Houda Bouamor | Hazem Hajj | Walid Magdy | Wajdi Zaghouani | Fethi Bougares | Nadi Tomeh | Ibrahim Abu Farha | Samia Touileb
Proceedings of the Sixth Arabic Natural Language Processing Workshop

2020

pdf bib
Multitask Easy-First Dependency Parsing: Exploiting Complementarities of Different Dependency Representations
Yash Kankanampati | Joseph Le Roux | Nadi Tomeh | Dima Taji | Nizar Habash
Proceedings of the 28th International Conference on Computational Linguistics

In this paper we present a parsing model for projective dependency trees which takes advantage of the existence of complementary dependency annotations which is the case in Arabic, with the availability of CATiB and UD treebanks. Our system performs syntactic parsing according to both annotation types jointly as a sequence of arc-creating operations, and partially created trees for one annotation are also available to the other as features for the score function. This method gives error reduction of 9.9% on CATiB and 6.1% on UD compared to a strong baseline, and ablation tests show that the main contribution of this reduction is given by sharing tree representation between tasks, and not simply sharing BiLSTM layers as is often performed in NLP multitask systems.

pdf bib
Proceedings of the Fifth Arabic Natural Language Processing Workshop
Imed Zitouni | Muhammad Abdul-Mageed | Houda Bouamor | Fethi Bougares | Mahmoud El-Haj | Nadi Tomeh | Wajdi Zaghouani
Proceedings of the Fifth Arabic Natural Language Processing Workshop

2019

pdf bib
Proceedings of the Fourth Arabic Natural Language Processing Workshop
Wassim El-Hajj | Lamia Hadrich Belguith | Fethi Bougares | Walid Magdy | Imed Zitouni | Nadi Tomeh | Mahmoud El-Haj | Wajdi Zaghouani
Proceedings of the Fourth Arabic Natural Language Processing Workshop

2017

pdf bib
Proceedings of the Third Arabic Natural Language Processing Workshop
Nizar Habash | Mona Diab | Kareem Darwish | Wassim El-Hajj | Hend Al-Khalifa | Houda Bouamor | Nadi Tomeh | Mahmoud El-Haj | Wajdi Zaghouani
Proceedings of the Third Arabic Natural Language Processing Workshop

2016

pdf bib
Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency Framework
Matthieu Constant | Joseph Le Roux | Nadi Tomeh
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Fouille de motifs et CRF pour la reconnaissance de symptômes dans les textes biomédicaux (Pattern mining and CRF for symptoms recognition in biomedical texts)
Pierre Holat | Nadi Tomeh | Thierry Charnois | Delphine Battistelli | Marie-Christine Jaulent | Jean-Philippe Métivier
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Articles longs)

Dans cet article, nous nous intéressons à l’extraction d’entités médicales de type symptôme dans les textes biomédicaux. Cette tâche est peu explorée dans la littérature et il n’existe pas à notre connaissance de corpus annoté pour entraîner un modèle d’apprentissage. Nous proposons deux approches faiblement supervisées pour extraire ces entités. Une première est fondée sur la fouille de motifs et introduit une nouvelle contrainte de similarité sémantique. La seconde formule la tache comme une tache d’étiquetage de séquences en utilisant les CRF (champs conditionnels aléatoires). Nous décrivons les expérimentations menées qui montrent que les deux approches sont complémentaires en termes d’évaluation quantitative (rappel et précision). Nous montrons en outre que leur combinaison améliore sensiblement les résultats.

2015

pdf bib
Classification de texte enrichie à l’aide de motifs séquentiels
Pierre Holat | Nadi Tomeh | Thierry Charnois
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

En classification de textes, la plupart des méthodes fondées sur des classifieurs statistiques utilisent des mots, ou des combinaisons de mots contigus, comme descripteurs. Si l’on veut prendre en compte plus d’informations le nombre de descripteurs non contigus augmente exponentiellement. Pour pallier à cette croissance, la fouille de motifs séquentiels permet d’extraire, de façon efficace, un nombre réduit de descripteurs qui sont à la fois fréquents et pertinents grâce à l’utilisation de contraintes. Dans ce papier, nous comparons l’utilisation de motifs fréquents sous contraintes et l’utilisation de motifs -libres, comme descripteurs. Nous montrons les avantages et inconvénients de chaque type de motif.

2014

pdf bib
Large Scale Arabic Error Annotation: Guidelines and Framework
Wajdi Zaghouani | Behrang Mohit | Nizar Habash | Ossama Obeid | Nadi Tomeh | Alla Rozovskaya | Noura Farra | Sarah Alkuhlani | Kemal Oflazer
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

We present annotation guidelines and a web-based annotation framework developed as part of an effort to create a manually annotated Arabic corpus of errors and corrections for various text types. Such a corpus will be invaluable for developing Arabic error correction tools, both for training models and as a gold standard for evaluating error correction algorithms. We summarize the guidelines we created. We also describe issues encountered during the training of the annotators, as well as problems that are specific to the Arabic language that arose during the annotation process. Finally, we present the annotation tool that was developed as part of this project, the annotation pipeline, and the quality of the resulting annotations.

pdf bib
LIPN: Introducing a new Geographical Context Similarity Measure and a Statistical Similarity Measure based on the Bhattacharyya coefficient
Davide Buscaldi | Jorge García Flores | Joseph Le Roux | Nadi Tomeh | Belém Priego Sanchez
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

pdf bib
A Pipeline Approach to Supervised Error Correction for the QALB-2014 Shared Task
Nadi Tomeh | Nizar Habash | Ramy Eskander | Joseph Le Roux
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)

pdf bib
Ontology-based Technical Text Annotation
François Lévy | Nadi Tomeh | Yue Ma
Proceedings of the COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language

pdf bib
Generalized Character-Level Spelling Error Correction
Noura Farra | Nadi Tomeh | Alla Rozovskaya | Nizar Habash
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf bib
Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition
Nadi Tomeh | Nizar Habash | Ryan Roth | Noura Farra | Pradeep Dasigi | Mona Diab
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Morphological Analysis and Disambiguation for Dialectal Arabic
Nizar Habash | Ryan Roth | Owen Rambow | Ramy Eskander | Nadi Tomeh
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Processing Spontaneous Orthography
Ramy Eskander | Nizar Habash | Owen Rambow | Nadi Tomeh
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
A Web-based Annotation Framework For Large-Scale Text Correction
Ossama Obeid | Wajdi Zaghouani | Behrang Mohit | Nizar Habash | Kemal Oflazer | Nadi Tomeh
The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations

2012

pdf bib
Improving Relative-Entropy Pruning using Statistical Significance
Wang Ling | Nadi Tomeh | Guang Xiang | Isabel Trancoso | Alan Black
Proceedings of COLING 2012: Posters

pdf bib
HadoopPerceptron: a Toolkit for Distributed Perceptron Training and Prediction with MapReduce
Andrea Gesmundo | Nadi Tomeh
Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics

2011

pdf bib
Discriminative Weighted Alignment Matrices For Statistical Machine Translation
Nadi Tomeh | Alexandre Allauzen | François Yvon
Proceedings of the 15th Annual Conference of the European Association for Machine Translation

pdf bib
Estimation d’un modèle de traduction à partir d’alignements mot-à-mot non-déterministes (Estimating a translation model from non-deterministic word-to-word alignments)
Nadi Tomeh | Alexandre Allauzen | François Yvon
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Dans les systèmes de traduction statistique à base de segments, le modèle de traduction est estimé à partir d’alignements mot-à-mot grâce à des heuristiques d’extraction et de valuation. Bien que ces alignements mot-à-mot soient construits par des modèles probabilistes, les processus d’extraction et de valuation utilisent ces modèles en faisant l’hypothèse que ces alignements sont déterministes. Dans cet article, nous proposons de lever cette hypothèse en considérant l’ensemble de la matrice d’alignement, d’une paire de phrases, chaque association étant valuée par sa probabilité. En comparaison avec les travaux antérieurs, nous montrons qu’en utilisant un modèle exponentiel pour estimer de manière discriminante ces probabilités, il est possible d’obtenir des améliorations significatives des performances de traduction. Ces améliorations sont mesurées à l’aide de la métrique BLEU sur la tâche de traduction de l’arabe vers l’anglais de l’évaluation NIST MT’09, en considérant deux types de conditions selon la taille du corpus de données parallèles utilisées.

pdf bib
How good are your phrases? Assessing phrase quality with single class classification
Nadi Tomeh | Marco Turchi | Guillaume Wisinewski | Alexandre Allauzen | François Yvon
Proceedings of the 8th International Workshop on Spoken Language Translation: Papers

We present a novel translation quality informed procedure for both extraction and scoring of phrase pairs in PBSMT systems. We reformulate the extraction problem in the supervised learning framework. Our goal is twofold. First, We attempt to take the translation quality into account; and second we incorporating arbitrary features in order to circumvent alignment errors. One-Class SVMs and the Mapping Convergence algorithm permit training a single-class classifier to discriminate between useful and useless phrase pairs. Such classifier can be learned from a training corpus that comprises only useful instances. The confidence score, produced by the classifier for each phrase pairs, is employed as a selection criteria. The smoothness of these scores allow a fine control over the size of the resulting translation model. Finally, confidence scores provide a new accuracy-based feature to score phrase pairs. Experimental evaluation of the method shows accurate assessments of phrase pairs quality even for regions in the space of possible phrase pairs that are ignored by other approaches. This enhanced evaluation of phrase pairs leads to improvements in the translation performance as measured by BLEU.

2010

pdf bib
Refining Word Alignment with Discriminative Training
Nadi Tomeh | Alexandre Allauzen | François Yvon | Guillaume Wisniewski
Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers

The quality of statistical machine translation systems depends on the quality of the word alignments that are computed during the translation model training phase. IBM alignment models, as implemented in the GIZA++ toolkit, constitute the de facto standard for performing these computations. The resulting alignments and translation models are however very noisy, and several authors have tried to improve them. In this work, we propose a simple and effective approach, which considers alignment as a series of independent binary classification problems in the alignment matrix. Through extensive feature engineering and the use of stacking techniques, we were able to obtain alignments much closer to manually defined references than those obtained by the IBM models. These alignments also yield better translation models, delivering improved performance in a large scale Arabic to English translation task.

2009

pdf bib
Complexity-Based Phrase-Table Filtering for Statistical Machine Translation
Nadi Tomeh | Nicola Cancedda | Marc Dymetman
Proceedings of Machine Translation Summit XII: Papers

Search