Multimodal large language models (MLLMs) have demonstrated promising results in a variety of tasks that combine vision and language. As these models become more integral to research and applications, conducting comprehensive evaluations of their capabilities has grown increasingly important. However, most existing benchmarks fail to consider that, in certain situations, images need to be interpreted within a broader context. In this work, we introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension. Our findings indicate that MLLMs consistently fall short of human performance on this benchmark. Further analysis confirms that these models struggle to effectively extract and utilize contextual information to improve their understanding of images. This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
Gender bias has been widely observed in NLP models, which has the potential to perpetuate harmful stereotypes and discrimination. In this paper, we construct a dataset GenderStance of 36k samples to measure gender bias in stance detection, determining whether models consistently predict the same stance for a particular gender group. We find that all models are gender-biased and prone to classify sentences that contain male nouns as Against and those with female nouns as Favor. Moreover, extensive experiments indicate that sources of gender bias stem from the fine-tuning data and the foundation model itself. We will publicly release our code and dataset.
Zero-shot stance detection that aims to detect the stance (typically against, favor, or neutral) towards unseen targets has attracted considerable attention. However, most previous studies only focus on targets from a single or limited text domains (e.g., financial domain), and thus zero-shot models cannot generalize well to unseen targets of diverse domains (e.g., political domain). In this paper, we consider a more realistic task, i.e., open-domain stance detection, which aims at training a model that is able to generalize well to unseen targets across multiple domains of interest. Particularly, we propose a novel dataset generation method ZeroStance, which leverages ChatGPT to construct a synthetic open-domain dataset CHATStance that covers a wide range of domains. We then train an open-domain model on our synthetic dataset after proper data filtering. Extensive results indicate that our model, when trained on this synthetic dataset, shows superior generalization to unseen targets of diverse domains over baselines on most benchmarks. Our method requires only a task description in the form of a prompt and is much more cost-effective and data-efficient than previous methods. We will release our code and data to facilitate future research.
A text corpus centered on events is foundational to research concerning the detection, representation, reasoning, and harnessing of online events. The majority of current event-based datasets mainly target sentence-level tasks, thus to advance event-related research spanning from sentence to document level, this paper introduces DEIE, a unified large-scale document-level event information extraction dataset with over 56,000+ events and 242,000+ arguments. Three key features stand out: large-scale manual annotation (20,000 documents), comprehensive unified annotation (encompassing event trigger/argument, summary, and relation at once), and emergency events annotation (covering 19 emergency types). Notably, our experiments reveal that current event-related models struggle with DEIE, signaling a pressing need for more advanced event-related research in the future.
Based on Pre-trained Language Models (PLMs), event coreference resolution (ECR) systems have demonstrated outstanding performance in clustering coreferential events across documents. However, the state-of-the-art system exhibits an excessive reliance on the ‘triggers lexical matching’ spurious pattern in the input mention pair text. We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM), aiming to identify spurious and causal associations (i.e., rationales) within the ECR task. Leveraging the debiasing capability of counterfactual data augmentation, we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop. This method is specialized for pairwise input in the ECR system, where we conduct direct interventions on triggers and context to mitigate the spurious association while emphasizing the causation. Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.
Active learning (AL), which aims to construct an effective training set by iteratively curating the most formative unlabeled data for annotation, has been widely used in low-resource tasks. Most active learning techniques in classification rely on the model’s uncertainty or disagreement to choose unlabeled data, suffering from the problem of over-confidence in superficial patterns and a lack of exploration.Inspired by the cognitive processes in which humans deduce and predict through causal information, we take an initial attempt towards integrating rationales into AL and propose a novel Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. We further facilitate the alignment of the model with human reasoning preference through a proposed ranking loss. During the selection of unlabeled data, the predicted uncertainty of the encoder and the explanation score of the decoder complement each other as the final metric to acquire informative data. Extensive experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines. Analysis indicates that the proposed method can generate corresponding explanations for its predictions.
Stance detection aims to detect the stance toward a corresponding target. Existing works use the assumption that the target is known in advance, which is often not the case in the wild. Given a text from social media platforms, the target information is often unknown due to implicit mentions in the source text and it is infeasible to have manual target annotations at a large scale. Therefore, in this paper, we propose a new task Target-Stance Extraction (TSE) that aims to extract the (target, stance) pair from the text. We benchmark the task by proposing a two-stage framework that first identifies the relevant target in the text and then detects the stance given the predicted target and text. Specifically, we first propose two different settings: Target Classification and Target Generation, to identify the potential target from a given text. Then we propose a multi-task approach that takes target prediction as the auxiliary task to detect the stance toward the predicted target. We evaluate the proposed framework on both in-target stance detection in which the test target is always seen in the training stage and zero-shot stance detection that needs to detect the stance for the targets that are unseen during the training phase. The new TSE task can facilitate future research in the field of stance detection.
Zero-shot stance detection (ZSSD) aims to determine whether the author of a text is in favor of, against, or neutral toward a target that is unseen during training. Despite the growing attention on ZSSD, most recent advances in this task are limited to English and do not pay much attention to other languages such as Chinese. To support ZSSD research, in this paper, we present C-STANCE that, to our knowledge, is the first Chinese dataset for zero-shot stance detection. We introduce two challenging subtasks for ZSSD: target-based ZSSD and domain-based ZSSD. Our dataset includes both noun-phrase targets and claim targets, covering a wide range of domains. We provide a detailed description and analysis of our dataset. To establish results on C-STANCE, we report performance scores using state-of-the-art deep learning models. We publicly release our dataset and code to facilitate future research.
Stance detection aims to determine the position of an author toward a target and provides insights into people’s views on controversial topics such as marijuana legalization. Despite recent progress in this task, most existing approaches use hard labels (one-hot vectors) during training, which ignores meaningful signals among categories offered by soft labels. In this work, we explore knowledge distillation for stance detection and present a comprehensive analysis. Our contributions are: 1) we propose to use knowledge distillation over multiple generations in which a student is taken as a new teacher to transfer knowledge to a new fresh student; 2) we propose a novel dynamic temperature scaling for knowledge distillation to calibrate teacher predictions in each generation step. Extensive results on three stance detection datasets show that knowledge distillation benefits stance detection and a teacher is able to transfer knowledge to a student more smoothly via calibrated guiding signals. We publicly release our code to facilitate future research.
Event argument extraction is critical to various natural language processing tasks for providing structured information. Existing works usually extract the event arguments one by one, and mostly neglect to build dependency information among event argument roles, especially from the perspective of event structure. Such an approach hinders the model from learning the interactions between different roles. In this paper, we raise our research question: How to adequately model dependencies between different roles for better performance? To this end, we propose an intra-event and inter-event dependency-aware graph network, which uses the event structure as the fundamental unit to construct dependencies between roles. Specifically, we first utilize the dense intra-event graph to construct role dependencies within events, and then construct dependencies between events by retrieving similar events of the current event through the retrieval module. To further optimize dependency information and event representation, we propose a dependency interaction module and two auxiliary tasks to improve the extraction ability of the model in different scenarios. Experimental results on the ACE05, RAMS, and WikiEvents datasets show the great advantages of our proposed approach.
Argument structure extraction (ASE) aims to identify the discourse structure of arguments within documents. Previous research has demonstrated that contextual information is crucial for developing an effective ASE model. However, we observe that merely concatenating sentences in a contextual window does not fully utilize contextual information and can sometimes lead to excessive attention on less informative sentences. To tackle this challenge, we propose an Efficient Context-aware ASE model (ECASE) that fully exploits contextual information by enhancing modeling capacity and augmenting training data. Specifically, we introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information. Additionally, we augment the training data by randomly masking discourse markers and sentences, which reduces the model’s reliance on specific words or less informative sentences. Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance. Furthermore, ablation studies confirm the effectiveness of each module in our model.
The prevalence of the COVID-19 pandemic in day-to-day life has yielded large amounts of stance detection data on social media sites, as users turn to social media to share their views regarding various issues related to the pandemic, e.g. stay at home mandates and wearing face masks when out in public. We set out to make use of this data by collecting the stance expressed by Twitter users, with respect to topics revolving around the pandemic. We annotate a new stance detection dataset, called COVID-19-Stance. Using this newly annotated dataset, we train several established stance detection models to ascertain a baseline performance for this specific task. To further improve the performance, we employ self-training and domain adaptation approaches to take advantage of large amounts of unlabeled data and existing stance detection datasets. The dataset, code, and other resources are available on GitHub.
Stance detection determines whether the author of a text is in favor of, against or neutral to a specific target and provides valuable insights into important events such as legalization of abortion. Despite significant progress on this task, one of the remaining challenges is the scarcity of annotations. Besides, most previous works focused on a hard-label training in which meaningful similarities among categories are discarded during training. To address these challenges, first, we evaluate a multi-target and a multi-dataset training settings by training one model on each dataset and datasets of different domains, respectively. We show that models can learn more universal representations with respect to targets in these settings. Second, we investigate the knowledge distillation in stance detection and observe that transferring knowledge from a teacher model to a student model can be beneficial in our proposed training settings. Moreover, we propose an Adaptive Knowledge Distillation (AKD) method that applies instance-specific temperature scaling to the teacher and student predictions. Results show that the multi-dataset model performs best on all datasets and it can be further improved by the proposed AKD, outperforming the state-of-the-art by a large margin. We publicly release our code.
The goal of stance detection is to identify whether the author of a text is in favor of, neutral or against a specific target. Despite substantial progress on this task, one of the remaining challenges is the scarcity of annotations. Data augmentation is commonly used to address annotation scarcity by generating more training samples. However, the augmented sentences that are generated by existing methods are either less diversified or inconsistent with the given target and stance label. In this paper, we formulate the data augmentation of stance detection as a conditional masked language modeling task and augment the dataset by predicting the masked word conditioned on both its context and the auxiliary sentence that contains target and label information. Moreover, we propose another simple yet effective method that generates target-aware sentence by replacing a target mention with the other. Experimental results show that our proposed methods significantly outperforms previous augmentation methods on 11 targets.
Stance detection aims to detect whether the opinion holder is in support of or against a given target. Recent works show improvements in stance detection by using either the attention mechanism or sentiment information. In this paper, we propose a multi-task framework that incorporates target-specific attention mechanism and at the same time takes sentiment classification as an auxiliary task. Moreover, we used a sentiment lexicon and constructed a stance lexicon to provide guidance for the attention layer. Experimental results show that the proposed model significantly outperforms state-of-the-art deep learning methods on the SemEval-2016 dataset.