Yun-Hsuan Sung

Also published as: Yun-hsuan Sung


2024

pdf bib
Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation
Tu Vu | Kalpesh Krishna | Salaheddin Alzubi | Chris Tar | Manaal Faruqui | Yun-Hsuan Sung
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

As large language models (LLMs) evolve, evaluating their output reliably becomes increasingly difficult due to the high cost of human evaluation. To address this, we introduce FLAMe, a family of Foundational Large Autorater Models. FLAMe is trained on a diverse set of over 100 quality assessment tasks, incorporating 5M+ human judgments curated from publicly released human evaluations. FLAMe outperforms models like GPT-4 and Claude-3 on various held-out tasks, and serves as a powerful starting point for fine-tuning, as shown in our reward model evaluation case study (FLAMe-RM). On Reward-Bench, FLAMe-RM-24B achieves 87.8% accuracy, surpassing GPT-4-0125 (85.9%) and GPT-4o (84.7%). Additionally, we introduce FLAMe-Opt-RM, an efficient tail-patch fine-tuning approach that offers competitive RewardBench performance using 25×fewer training datapoints. Our FLAMe variants outperform popular proprietary LLM-as-a-Judge models on 8 of 12 autorater benchmarks, covering 53 quality assessment tasks, including RewardBench and LLM-AggreFact. Finally, our analysis shows that FLAMe is significantly less biased than other LLM-as-a-Judge models on the CoBBLEr autorater bias benchmark.

pdf bib
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation
Tu Vu | Mohit Iyyer | Xuezhi Wang | Noah Constant | Jerry Wei | Jason Wei | Chris Tar | Yun-Hsuan Sung | Denny Zhou | Quoc Le | Thang Luong
Findings of the Association for Computational Linguistics: ACL 2024

Since most large language models (LLMs) are trained once and never updated, they struggle to dynamically adapt to our ever-changing world. In this work, we present FreshQA, a dynamic QA benchmark that tests a model’s ability to answer questions that may require reasoning over up-to-date world knowledge. We develop a two-mode human evaluation procedure to measure both correctness and hallucination, which we use to benchmark both closed and open-source LLMs by collecting >50K human judgments. We observe that all LLMs struggle to answer questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. In response, we develop FreshPrompt, a few-shot prompting method that curates and organizes relevant information from a search engine into an LLM’s prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. To facilitate future work, we additionally develop FreshEval, a reliable autorater for quick evaluation and comparison on FreshQA. Our latest results with FreshEval suggest that open-source LLMs such as Mixtral (Jiang et al., 2024), when combined with FreshPrompt, are competitive with closed-source and commercial systems on search-augmented QA.

pdf bib
Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems
Frank Palma Gomez | Ramon Sanabria | Yun-hsuan Sung | Daniel Cer | Siddharth Dalmia | Gustavo Hernandez Abrego
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn’t require speech data during LLM pre-training and can exploit LLM’s multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data.

2023

pdf bib
CoLT5: Faster Long-Range Transformers with Conditional Computation
Joshua Ainslie | Tao Lei | Michiel de Jong | Santiago Ontanon | Siddhartha Brahma | Yury Zemlyanskiy | David Uthus | Mandy Guo | James Lee-Thorp | Yi Tay | Yun-Hsuan Sung | Sumit Sanghai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many natural language processing tasks benefit from long inputs, but processing long documents with Transformers is expensive – not only due to quadratic attention complexity but also from applying feedforward and projection layers to every token. However, not all tokens are equally important, especially for longer documents. We propose CoLT5, a long-input Transformer model that builds on this intuition by employing conditional computation, devoting more resources to important tokens in both feedforward and attention layers. We show that CoLT5 achieves stronger performance than LongT5 with much faster training and inference, achieving SOTA on the long-input SCROLLS benchmark. Moreover, CoLT5 can effectively and tractably make use of extremely long inputs, showing strong gains up to 64k input length.

2022

pdf bib
LongT5: Efficient Text-To-Text Transformer for Long Sequences
Mandy Guo | Joshua Ainslie | David Uthus | Santiago Ontanon | Jianmo Ni | Yun-Hsuan Sung | Yinfei Yang
Findings of the Association for Computational Linguistics: NAACL 2022

Recent work has shown that either (1) increasing the input length or (2) increasing model size can improve the performance of Transformer-based neural models. In this paper, we present LongT5, a new model that explores the effects of scaling both the input length and model size at the same time. Specifically, we integrate attention ideas from long-input transformers (ETC), and adopt pre-training strategies from summarization pre-training (PEGASUS) into the scalable T5 architecture. The result is a new attention mechanism we call Transient Global (TGlobal), which mimics ETC’s local/global attention mechanism, but without requiring additional side-inputs. We are able to achieve state-of-the-art results on several summarization and question answering tasks, as well as outperform the original T5 models on these tasks. We have open sourced our architecture and training code, as well as our pre-trained model checkpoints.

2020

pdf bib
Multilingual Universal Sentence Encoder for Semantic Retrieval
Yinfei Yang | Daniel Cer | Amin Ahmad | Mandy Guo | Jax Law | Noah Constant | Gustavo Hernandez Abrego | Steve Yuan | Chris Tar | Yun-hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present easy-to-use retrieval focused multilingual sentence embedding models, made available on TensorFlow Hub. The models embed text from 16 languages into a shared semantic space using a multi-task trained dual-encoder that learns tied cross-lingual representations via translation bridge tasks (Chidambaram et al., 2018). The models achieve a new state-of-the-art in performance on monolingual and cross-lingual semantic retrieval (SR). Competitive performance is obtained on the related tasks of translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On transfer learning tasks, our multilingual embeddings approach, and in some cases exceed, the performance of English only sentence embeddings.

2019

pdf bib
Hierarchical Document Encoder for Parallel Corpus Mining
Mandy Guo | Yinfei Yang | Keith Stevens | Daniel Cer | Heming Ge | Yun-hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

We explore using multilingual document embeddings for nearest neighbor mining of parallel data. Three document-level representations are investigated: (i) document embeddings generated by simply averaging multilingual sentence embeddings; (ii) a neural bag-of-words (BoW) document encoding model; (iii) a hierarchical multilingual document encoder (HiDE) that builds on our sentence-level model. The results show document embeddings derived from sentence-level averaging are surprisingly effective for clean datasets, but suggest models trained hierarchically at the document-level are more effective on noisy data. Analysis experiments demonstrate our hierarchical models are very robust to variations in the underlying sentence embedding quality. Using document embeddings trained with HiDE achieves the state-of-the-art on United Nations (UN) parallel document mining, 94.9% P@1 for en-fr and 97.3% P@1 for en-es.

2018

pdf bib
Learning Semantic Textual Similarity from Conversations
Yinfei Yang | Steve Yuan | Daniel Cer | Sheng-yi Kong | Noah Constant | Petr Pilar | Heming Ge | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Third Workshop on Representation Learning for NLP

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational responses. The resulting sentence embeddings perform well on the Semantic Textual Similarity (STS) Benchmark and SemEval 2017’s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training, combining conversational response prediction and natural language inference. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS Benchmark and is competitive with the state-of-the-art feature engineered and mixed systems for both tasks.

pdf bib
Effective Parallel Corpus Mining using Bilingual Sentence Embeddings
Mandy Guo | Qinlan Shen | Yinfei Yang | Heming Ge | Daniel Cer | Gustavo Hernandez Abrego | Keith Stevens | Noah Constant | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Third Conference on Machine Translation: Research Papers

This paper presents an effective approach for parallel corpus mining using bilingual sentence embeddings. Our embedding models are trained to produce similar representations exclusively for bilingual sentence pairs that are translations of each other. This is achieved using a novel training method that introduces hard negatives consisting of sentences that are not translations but have some degree of semantic similarity. The quality of the resulting embeddings are evaluated on parallel corpus reconstruction and by assessing machine translation systems trained on gold vs. mined sentence pairs. We find that the sentence embeddings can be used to reconstruct the United Nations Parallel Corpus (Ziemski et al., 2016) at the sentence-level with a precision of 48.9% for en-fr and 54.9% for en-es. When adapted to document-level matching, we achieve a parallel document matching accuracy that is comparable to the significantly more computationally intensive approach of Uszkoreit et al. (2010). Using reconstructed parallel data, we are able to train NMT models that perform nearly as well as models trained on the original data (within 1-2 BLEU).