Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.
Building a dialogue agent that can seamlessly interact with humans in multi-modal regimes, requires two fundamental abilities: (1) understanding emotion and dialogue acts within situated user scenarios, and (2) grounding perceived visual cues to dialogue contexts. However, recent works have uncovered shortcomings of existing dialogue agents in understanding emotions and dialogue acts, and in ground- ing visual cues effectively. In this work, we investigate whether additional dialogue data with only visual descriptions can help dialogue agents effectively align visual and textual features, and enhance the ability of dialogue agents to ground perceived visual cues to dialogue contexts. To this end, in the absence of a suitable dataset, we propose a synthetic visual description generation pipeline, and con- tribute a large-scale synthetic visual description dataset. In addition, we propose a general training procedure for effectively leveraging these synthetic data. We conduct comprehensive analyses to evaluate the impact of synthetic data on two benchmarks: MELD and IEMOCAP. Our findings suggest that synthetic visual descriptions can serve as an effective way to enhance a dialogue agents’ grounding ability, and that the training scheme affects the extent to which these descriptions improve the agent’s performance.
We consider two types of numeric representations for conveying the uncertainty of predictions made by Machine Learning (ML) models: confidence-based (e.g., “the AI is 90% confident”) and frequency-based (e.g., “the AI was correct in 180 (90%) out of 200 cases”). We conducted a user study to determine which factors influence users’ acceptance of predictions made by ML models, and how the two types of uncertainty representations affect users’ views about explanations. Our results show that users’ acceptance of ML model predictions depends mainly on the models’ confidence, and that explanations that include uncertainty information are deemed better in several respects than explanations that omit it, with frequency-based representations being deemed better than confidence-based representations.
In this paper, we generate and compare three types of explanations of Machine Learning (ML) predictions: simple, conservative and unifying. Simple explanations are concise, conservative explanations address the surprisingness of a prediction, and unifying explanations convey the extent to which an ML model’s predictions are applicable. The results of our user study show that (1) conservative and unifying explanations are liked equally and considered largely equivalent in terms of completeness, helpfulness for understanding the AI, and enticement to act, and both are deemed better than simple explanations; and (2)users’ views about explanations are influenced by the (dis)agreement between the ML model’s predictions and users’ estimations of these predictions, and by the inclusion/omission of features users expect to see in explanations.
Flowchart-grounded troubleshooting dialogue (FTD) systems, which follow the instructions of a flowchart to diagnose users’ problems in specific domains (e.g., vehicle, laptop), have been gaining research interest in recent years. However, collecting sufficient dialogues that are naturally grounded on flowcharts is costly, thus FTD systems are impeded by scarce training data. To mitigate the data sparsity issue, we propose a plan-based synthetic data generation (PlanSDG) approach that generates diverse synthetic dialog data at scale by transforming concise flowchart into dialogues. Specifically, its generative model employs a variational-base framework with a hierarchical planning strategy that includes global and local latent planning variables. Experiments on the FloDial dataset show that synthetic dialogue produced by PlanSDG improves the performance of downstream tasks, including flowchart path retrieval and response generation, in particular on the Out-of-Flowchart settings. In addition, further analysis demonstrate the quality of synthetic data generated by PlanSDG in paths that are covered by current sample dialogues and paths that are not covered.
The importance of explaining the outcome of a machine learning model, especially a black-box model, is widely acknowledged. Recent approaches explain an outcome by identifying the contributions of input features to this outcome. In environments involving large black-box models or complex inputs, this leads to computationally demanding algorithms. Further, these algorithms often suffer from low stability, with explanations varying significantly across similar examples. In this paper, we propose a Learning to Explain (L2E) approach that learns the behaviour of an underlying explanation algorithm simultaneously from all training examples. Once the explanation algorithm is distilled into an explainer network, it can be used to explain new instances. Our experiments on three classification tasks, which compare our approach to six explanation algorithms, show that L2E is between 5 and 7.5×10ˆ4 times faster than these algorithms, while generating more stable explanations, and having comparable faithfulness to the black-box model.
Visual question answering (VQA) models, in particular modular ones, are commonly trained on large-scale datasets to achieve state-of-the-art performance. However, such datasets are sometimes not available. Further, it has been shown that training these models on small datasets significantly reduces their accuracy. In this paper, we propose curriculum-based learning (CL) regime to increase the accuracy of VQA models trained on small datasets. Specifically, we offer three criteria to rank the samples in these datasets and propose a training strategy for each criterion. Our results show that, for small datasets, our CL approach yields more accurate results than those obtained when training with no curriculum.
We offer an approach to explain Decision Tree (DT) predictions by addressing potential conflicts between aspects of these predictions and plausible expectations licensed by background information. We define four types of conflicts, operationalize their identification, and specify explanatory schemas that address them. Our human evaluation focused on the effect of explanations on users’ understanding of a DT’s reasoning and their willingness to act on its predictions. The results show that (1) explanations that address potential conflicts are considered at least as good as baseline explanations that just follow a DT path; and (2) the conflict-based explanations are deemed especially valuable when users’ expectations disagree with the DT’s predictions.
Lifelong Learning (LL) black-box models are dynamic in that they keep learning from new tasks and constantly update their parameters. Owing to the need to utilize information from previously seen tasks, and capture commonalities in potentially diverse data, it is hard for automatic explanation methods to explain the outcomes of these models. In addition, existing explanation methods, e.g., LIME, which are computationally expensive when explaining a static black-box model, are even more inefficient in the LL setting. In this paper, we propose a novel Lifelong Explanation (LLE) approach that continuously trains a student explainer under the supervision of a teacher – an arbitrary explanation algorithm – on different tasks undertaken in LL. We also leverage the Experience Replay (ER) mechanism to prevent catastrophic forgetting in the student explainer. Our experiments comparing LLE to three baselines on text classification tasks show that LLE can enhance the stability of the explanations for all seen tasks and maintain the same level of faithfulness to the black-box model as the teacher, while being up to 10ˆ2 times faster at test time. Our ablation study shows that the ER mechanism in our LLE approach enhances the learning capabilities of the student explainer. Our code is available at https://github.com/situsnow/LLE.
We describe a longitudinal user study conducted in the context of a Spoken Dialogue System for a household robot, where we examined the influence of time displacement and situational risk on users’ preferred responses. To this effect, we employed a corpus of spoken requests that asked a robot to fetch or move objects in a room. In the first stage of our study, participants selected among four response types to these requests under two risk conditions: low and high. After some time, the same participants rated several responses to the previous requests — these responses were instantiated from the four response types. Our results show that participants did not rate highly their own response types; moreover, they rated their own response types similarly to different ones. This suggests that, at least in this context, people’s preferences at a particular point in time may not reflect their general attitudes, and that various reasonable response types may be equally acceptable. Our study also reveals that situational risk influences the acceptability of some response types.
In spite of the recent success of Dialogue Act (DA) classification, the majority of prior works focus on text-based classification with oracle transcriptions, i.e. human transcriptions, instead of Automatic Speech Recognition (ASR)’s transcriptions. In spoken dialog systems, however, the agent would only have access to noisy ASR transcriptions, which may further suffer performance degradation due to domain shift. In this paper, we explore the effectiveness of using both acoustic and textual signals, either oracle or ASR transcriptions, and investigate speaker domain adaptation for DA classification. Our multimodal model proves to be superior to the unimodal models, particularly when the oracle transcriptions are not available. We also propose an effective method for speaker domain adaptation, which achieves competitive results.
Contextual sequence mapping is one of the fundamental problems in Natural Language Processing (NLP). Here, instead of relying solely on the information presented in the text, the learning agents have access to a strong external signal given to assist the learning process. In this paper, we propose a novel family of Recurrent Neural Network unit: the Context-dependent Additive Recurrent Neural Network (CARNN) that is designed specifically to address this type of problem. The experimental results on public datasets in the dialog problem (Babi dialog Task 6 and Frame), contextual language model (Switchboard and Penn Tree Bank) and question answering (Trec QA) show that our novel CARNN-based architectures outperform previous methods.
This paper introduces a novel training/decoding strategy for sequence labeling. Instead of greedily choosing a label at each time step, and using it for the next prediction, we retain the probability distribution over the current label, and pass this distribution to the next prediction. This approach allows us to avoid the effect of label bias and error propagation in sequence learning/decoding. Our experiments on dialogue act classification demonstrate the effectiveness of this approach. Even though our underlying neural network model is relatively simple, it outperforms more complex neural models, achieving state-of-the-art results on the MapTask and Switchboard corpora.
We propose a novel hierarchical Recurrent Neural Network (RNN) for learning sequences of Dialogue Acts (DAs). The input in this task is a sequence of utterances (i.e., conversational contributions) comprising a sequence of tokens, and the output is a sequence of DA labels (one label per utterance). Our model leverages the hierarchical nature of dialogue data by using two nested RNNs that capture long-range dependencies at the dialogue level and the utterance level. This model is combined with an attention mechanism that focuses on salient tokens in utterances. Our experimental results show that our model outperforms strong baselines on two popular datasets, Switchboard and MapTask; and our detailed empirical analysis highlights the impact of each aspect of our model.
We propose a novel generative neural network architecture for Dialogue Act classification. Building upon the Recurrent Neural Network framework, our model incorporates a novel attentional technique and a label to label connection for sequence learning, akin to Hidden Markov Models. The experiments show that both of these innovations lead our model to outperform strong baselines for dialogue act classification on MapTask and Switchboard corpora. We further empirically analyse the effectiveness of each of the new innovations.
The development of text mining techniques for biomedical research literature has received increased attention in recent times. However, most of these techniques focus on prose, while much important biomedical data reside in tables. In this paper, we present a corpus created to serve as a gold standard for the development and evaluation of techniques for the automatic extraction of information from biomedical tables. We describe the guidelines used for corpus annotation and the manner in which they were developed. The high inter-annotator agreement achieved on the corpus, and the generic nature of our annotation approach, suggest that the developed guidelines can serve as a general framework for table annotation in biomedical and other scientific domains. The annotated corpus and the guidelines are available at http://www.csse.monash.edu.au/research/umnl/data/index.shtml.