As large language models (LLMs) evolve, evaluating their output reliably becomes increasingly difficult due to the high cost of human evaluation. To address this, we introduce FLAMe, a family of Foundational Large Autorater Models. FLAMe is trained on a diverse set of over 100 quality assessment tasks, incorporating 5M+ human judgments curated from publicly released human evaluations. FLAMe outperforms models like GPT-4 and Claude-3 on various held-out tasks, and serves as a powerful starting point for fine-tuning, as shown in our reward model evaluation case study (FLAMe-RM). On Reward-Bench, FLAMe-RM-24B achieves 87.8% accuracy, surpassing GPT-4-0125 (85.9%) and GPT-4o (84.7%). Additionally, we introduce FLAMe-Opt-RM, an efficient tail-patch fine-tuning approach that offers competitive RewardBench performance using 25×fewer training datapoints. Our FLAMe variants outperform popular proprietary LLM-as-a-Judge models on 8 of 12 autorater benchmarks, covering 53 quality assessment tasks, including RewardBench and LLM-AggreFact. Finally, our analysis shows that FLAMe is significantly less biased than other LLM-as-a-Judge models on the CoBBLEr autorater bias benchmark.
A naive application of state-of-the-art bidirectional encoders for streaming sequence tagging would require encoding each token from scratch for each new token in an incremental streaming input (like transcribed speech). The lack of re-usability of previous computation leads to a higher number of Floating Point Operations (or FLOPs) and higher number of unnecessary label flips. Increased FLOPs consequently lead to higher wall-clock time and increased label flipping leads to poorer streaming performance. In this work, we present a Hybrid Encoder with Adaptive Restart (HEAR) that addresses these issues while maintaining the performance of bidirectional encoders over the offline (or complete) and improving streaming (or incomplete) inputs. HEAR has a Hybrid unidirectional-bidirectional encoder architecture to perform sequence tagging, along with an Adaptive Restart Module (ARM) to selectively guide the restart of bidirectional portion of the encoder. Across four sequence tagging tasks, HEAR offers FLOP savings in streaming settings upto 71.1% and also outperforms bidirectional encoders for streaming predictions by upto +10% streaming exact match.
While many real-life tasks require reasoning over multi-step sequential instructions, collecting fine-grained annotations for each intermediate step can be prohibitively expensive. In this work, we study how general pretrained sequence-to-sequence transformers perform under varying types of annotation for sequential instruction understanding. We conduct experiments using T5 (Raffel et al., 2020) on a commonly-used multi-step instruction understanding dataset SCONE (Long et al., 2016) that includes three sub-tasks. First, we show that with only gold supervision for the final step of a multi-step instruction sequence, depending on the sequential properties of different tasks, transformers may exhibit extremely bad performance on intermediate steps, in stark contrast with their performance on the final step. Next, we explore two directions to relieve this problem. We show that with the same limited annotation budget, using supervision uniformly distributed across different steps (instead of only final-step supervision), we can greatly improve the performance on intermediate steps with a drop in final-step performance. Further, we explore a contrastive learning approach to provide training signals on intermediate steps with zero intermediate gold supervision. This, however, achieves mixed results. It significantly improves the model’s bad intermediate-step performance on one subtask, but also shows decreased performance on another subtask.
As more users across the world are interacting with dialog agents in their daily life, there is a need for better speech understanding that calls for renewed attention to the dynamics between research in automatic speech recognition (ASR) and natural language understanding (NLU). We briefly review these research areas and lay out the current relationship between them. In light of the observations we make in this article, we argue that (1) NLU should be cognizant of the presence of ASR models being used upstream in a dialog system’s pipeline, (2) ASR should be able to learn from errors found in NLU, (3) there is a need for end-to-end data sets that provide semantic annotations on spoken input, (4) there should be stronger collaboration between ASR and NLU research communities.
Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT-3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TimeDial. We formulate TimeDial as a multiple choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at https://github.com/google-research-datasets/timedial.
We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.
We propose a novel conditioned text generation model. It draws inspiration from traditional template-based text generation techniques, where the source provides the content (i.e., what to say), and the template influences how to say it. Building on the successful encoder-decoder paradigm, it first encodes the content representation from the given input text; to produce the output, it retrieves exemplar text from the training data as “soft templates,” which are then used to construct an exemplar-specific decoder. We evaluate the proposed model on abstractive text summarization and data-to-text generation. Empirical results show that this model achieves strong performance and outperforms comparable baselines.
Automatically constructed datasets for generating text from semi-structured data (tables), such as WikiBio, often contain reference texts that diverge from the information in the corresponding semi-structured data. We show that metrics which rely solely on the reference texts, such as BLEU and ROUGE, show poor correlation with human judgments when those references diverge. We propose a new metric, PARENT, which aligns n-grams from the reference and generated texts to the semi-structured data before computing their precision and recall. Through a large scale human evaluation study of table-to-text models for WikiBio, we show that PARENT correlates with human judgments better than existing text generation metrics. We also adapt and evaluate the information extraction based evaluation proposed by Wiseman et al (2017), and show that PARENT has comparable correlation to it, while being easier to use. We show that PARENT is also applicable when the reference texts are elicited from humans using the data from the WebNLG challenge.
We release a corpus of 43 million atomic edits across 8 languages. These edits are mined from Wikipedia edit history and consist of instances in which a human editor has inserted a single contiguous phrase into, or deleted a single contiguous phrase from, an existing sentence. We use the collected data to show that the language generated during editing differs from the language that we observe in standard corpora, and that models trained on edits encode different aspects of semantics and discourse than models trained on raw text. We release the full corpus as a resource to aid ongoing research in semantics, discourse, and representation learning.
Split and rephrase is the task of breaking down a sentence into shorter ones that together convey the same meaning. We extract a rich new dataset for this task by mining Wikipedia’s edit history: WikiSplit contains one million naturally occurring sentence rewrites, providing sixty times more distinct split examples and a ninety times larger vocabulary than the WebSplit corpus introduced by Narayan et al. (2017) as a benchmark for this task. Incorporating WikiSplit as training data produces a model with qualitatively better predictions that score 32 BLEU points above the prior best result on the WebSplit benchmark.
Understanding search queries is a hard problem as it involves dealing with “word salad” text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. Here, we introduce a new task of identifying a well-formed natural language question. We construct and release a dataset of 25,100 publicly available questions classified into well-formed and non-wellformed categories and report an accuracy of 70.7% on the test set. We also show that our classifier can be used to improve the performance of neural sequence-to-sequence models for generating questions for reading comprehension.
This paper describes our system submission to the SemEval 2018 Task 10 on Capturing Discriminative Attributes. Given two concepts and an attribute, the task is to determine whether the attribute is semantically related to one concept and not the other. In this work we assume that discriminative attributes can be detected by discovering the association (or lack of association) between a pair of words. The hypothesis we test in this contribution is whether the semantic difference between two pairs of concepts can be treated in terms of measuring the distance between words in a vector space, or can simply be obtained as a by-product of word co-occurrence counts.
In recent past, NLP as a field has seen tremendous utility of distributional word vector representations as features in downstream tasks. The fact that these word vectors can be trained on unlabeled monolingual corpora of a language makes them an inexpensive resource in NLP. With the increasing use of monolingual word vectors, there is a need for word vectors that can be used as efficiently across multiple languages as monolingually. Therefore, learning bilingual and multilingual word embeddings/vectors is currently an important research topic. These vectors offer an elegant and language-pair independent way to represent content across different languages.This tutorial aims to bring NLP researchers up to speed with the current techniques in cross-lingual word representation learning. We will first discuss how to induce cross-lingual word representations (covering both bilingual and multilingual ones) from various data types and resources (e.g., parallel data, comparable data, non-aligned monolingual data in different languages, dictionaries and theasuri, or, even, images, eye-tracking data). We will then discuss how to evaluate such representations, intrinsically and extrinsically. We will introduce researchers to state-of-the-art methods for constructing cross-lingual word representations and discuss their applicability in a broad range of downstream NLP applications.We will deliver a detailed survey of the current methods, discuss best training and evaluation practices and use-cases, and provide links to publicly available implementations, datasets, and pre-trained models.
Morpho-syntactic lexicons provide information about the morphological and syntactic roles of words in a language. Such lexicons are not available for all languages and even when available, their coverage can be limited. We present a graph-based semi-supervised learning method that uses the morphological, syntactic and semantic relations between words to automatically construct wide coverage lexicons from small seed sets. Our method is language-independent, and we show that we can expand a 1000 word seed lexicon to more than 100 times its size with high quality for 11 languages. In addition, the automatically created lexicons provide features that improve performance in two downstream tasks: morphological tagging and dependency parsing.
We develop a supersense taxonomy for adjectives, based on that of GermaNet, and apply it to English adjectives in WordNet using human annotation and supervised classification. Results show that accuracy for automatic adjective type classification is high, but synsets are considerably more difficult to classify, even for trained human annotators. We release the manually annotated data, the classifier, and the induced supersense labeling of 12,304 WordNet adjective synsets.