Zhe Gan


2024

pdf bib
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Yuhui Zhang | Brandon McKinzie | Zhe Gan | Vaishaal Shankar | Alexander T Toshev
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models’ capability.

2023

pdf bib
An Empirical Study of Multimodal Model Merging
Yi-Lin Sung | Linjie Li | Kevin Lin | Zhe Gan | Mohit Bansal | Lijuan Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Model merging (e.g., via interpolation or task arithmetic) fuses multiple models trained on different tasks to generate a multi-task solution. The technique has been proven successful in previous studies, where the models are trained on similar tasks and with the same initialization. In this paper, we expand on this concept to a multimodal setup by merging transformers trained on different modalities. Furthermore, we conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture to create a parameter-efficient modality-agnostic architecture. Through comprehensive experiments, we systematically investigate the key factors impacting model performance after merging, including initialization, merging mechanisms, and model architectures. We also propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes. Our analysis leads to an effective training recipe for matching the performance of the modality-agnostic baseline (i.e., pre-trained from scratch) via model merging. Our method also outperforms naive merging significantly on various tasks, with improvements of 3% on VQA, 7% on COCO retrieval, 25% on NLVR2, 14% on Flickr30k and 3% on ADE20k.

2021

pdf bib
EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets
Xiaohan Chen | Yu Cheng | Shuohang Wang | Zhe Gan | Zhangyang Wang | Jingjing Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Heavily overparameterized language models such as BERT, XLNet and T5 have achieved impressive success in many NLP tasks. However, their high model complexity requires enormous computation resources and extremely long training time for both pre-training and fine-tuning. Many works have studied model compression on large NLP models, but only focusing on reducing inference time while still requiring an expensive training process. Other works use extremely large batch sizes to shorten the pre-training time, at the expense of higher computational resource demands. In this paper, inspired by the Early-Bird Lottery Tickets recently studied for computer vision tasks, we propose EarlyBERT, a general computationally-efficient training algorithm applicable to both pre-training and fine-tuning of large-scale language models. By slimming the self-attention and fully-connected sub-layers inside a transformer, we are the first to identify structured winning tickets in the early stage of BERT training. We apply those tickets towards efficient BERT training, and conduct comprehensive pre-training and fine-tuning experiments on GLUE and SQuAD downstream tasks. Our results show that EarlyBERT achieves comparable performance to standard BERT, with 35 45% less training time. Code is available at https://github.com/VITA-Group/EarlyBERT.

pdf bib
APo-VAE: Text Generation in Hyperbolic Space
Shuyang Dai | Zhe Gan | Yu Cheng | Chenyang Tao | Lawrence Carin | Jingjing Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of Kullback-Leibler divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling, unaligned style transfer, and dialog-response generation demonstrate the effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.

pdf bib
Cluster-Former: Clustering-based Sparse Transformer for Question Answering
Shuohang Wang | Luowei Zhou | Zhe Gan | Yen-Chun Chen | Yuwei Fang | Siqi Sun | Yu Cheng | Jingjing Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Improving Adversarial Text Generation by Modeling the Distant Future
Ruiyi Zhang | Changyou Chen | Zhe Gan | Wenlin Wang | Dinghan Shen | Guoyin Wang | Zheng Wen | Lawrence Carin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Auto-regressive text generation models usually focus on local fluency, and may cause inconsistent semantic meaning in long text generation. Further, automatically generating words with similar semantics is challenging, and hand-crafted linguistic rules are difficult to apply. We consider a text planning scheme and present a model-based imitation-learning approach to alleviate the aforementioned issues. Specifically, we propose a novel guider network to focus on the generative process over a longer horizon, which can assist next-word prediction and provide intermediate rewards for generator optimization. Extensive experiments demonstrate that the proposed method leads to improved performance.

pdf bib
Discourse-Aware Neural Extractive Text Summarization
Jiacheng Xu | Zhe Gan | Yu Cheng | Jingjing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently BERT has been adopted for document encoding in state-of-the-art text summarization models. However, sentence-based extractive models often result in redundant or uninformative phrases in the extracted summaries. Also, long-range dependencies throughout a document are not well captured by BERT, which is pre-trained on sentence pairs instead of documents. To address these issues, we present a discourse-aware neural summarization model - DiscoBert. DiscoBert extracts sub-sentential discourse units (instead of sentences) as candidates for extractive selection on a finer granularity. To capture the long-range dependencies among discourse units, structural discourse graphs are constructed based on RST trees and coreference mentions, encoded with Graph Convolutional Networks. Experiments show that the proposed model outperforms state-of-the-art methods by a significant margin on popular summarization benchmarks compared to other BERT-base models.

pdf bib
Distilling Knowledge Learned in BERT for Text Generation
Yen-Chun Chen | Zhe Gan | Yu Cheng | Jingzhou Liu | Jingjing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT’s idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets.

pdf bib
Contextual Text Style Transfer
Yu Cheng | Zhe Gan | Yizhe Zhang | Oussama Elachqar | Dianqi Li | Jingjing Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: (I) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; (ii) how to train a robust model with limited labeled data accompanied by context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.

pdf bib
Cross-Thought for Sentence Encoder Pre-training
Shuohang Wang | Yuwei Fang | Siqi Sun | Zhe Gan | Yu Cheng | Jingjing Liu | Jing Jiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering. Instead of using the original signals of full sentences, we train a Transformer-based sequence encoder over a large set of short sequences, which allows the model to automatically select the most useful information for predicting masked words. Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders trained with continuous sentence signals as well as traditional masked language modeling baselines. Our proposed approach also achieves new state of the art on HotpotQA (full-wiki setting) by improving intermediate information retrieval performance.

pdf bib
Contrastive Distillation on Intermediate Representations for Language Model Compression
Siqi Sun | Zhe Gan | Yuwei Fang | Yu Cheng | Shuohang Wang | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.

pdf bib
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
Linjie Li | Yen-Chun Chen | Yu Cheng | Zhe Gan | Licheng Yu | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.

pdf bib
POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training
Yizhe Zhang | Guoyin Wang | Chunyuan Li | Zhe Gan | Chris Brockett | Bill Dolan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields a logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that Pointer achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research.

pdf bib
Hierarchical Graph Network for Multi-hop Question Answering
Yuwei Fang | Siqi Sun | Zhe Gan | Rohit Pillai | Shuohang Wang | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.

pdf bib
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong | Shuohang Wang | Zhe Gan | Yu Cheng | Jackie Chi Kit Cheung | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.

2019

pdf bib
Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog
Zhe Gan | Yu Cheng | Ahmed Kholy | Linjie Li | Jingjing Liu | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a new model for visual dialog, Recurrent Dual Attention Network (ReDAN), using multi-step reasoning to answer a series of questions about an image. In each question-answering turn of a dialog, ReDAN infers the answer progressively through multiple reasoning steps. In each step of the reasoning process, the semantic representation of the question is updated based on the image and the previous dialog history, and the recurrently-refined representation is used for further reasoning in the subsequent step. On the VisDial v1.0 dataset, the proposed ReDAN model achieves a new state-of-the-art of 64.47% NDCG score. Visualization on the reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues via iterative refinement, which can lead to the correct answer step-by-step.

pdf bib
Topic-Guided Variational Auto-Encoder for Text Generation
Wenlin Wang | Zhe Gan | Hongteng Xu | Ruiyi Zhang | Guoyin Wang | Dinghan Shen | Changyou Chen | Lawrence Carin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We propose a topic-guided variational auto-encoder (TGVAE) model for text generation. Distinct from existing variational auto-encoder (VAE) based approaches, which assume a simple Gaussian prior for latent code, our model specifies the prior as a Gaussian mixture model (GMM) parametrized by a neural topic module. Each mixture component corresponds to a latent topic, which provides a guidance to generate sentences under the topic. The neural topic module and the VAE-based neural sequence module in our model are learned jointly. In particular, a sequence of invertible Householder transformations is applied to endow the approximate posterior of the latent code with high flexibility during the model inference. Experimental results show that our TGVAE outperforms its competitors on both unconditional and conditional text generation, which can also generate semantically-meaningful sentences with various topics.

pdf bib
TIGEr: Text-to-Image Grounding for Image Caption Evaluation
Ming Jiang | Qiuyuan Huang | Lei Zhang | Xin Wang | Pengchuan Zhang | Zhe Gan | Jana Diesner | Jianfeng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper presents a new metric called TIGEr for the automatic evaluation of image captioning systems. Popular metrics, such as BLEU and CIDEr, are based solely on text matching between reference captions and machine-generated captions, potentially leading to biased evaluations because references may not fully cover the image content and natural language is inherently ambiguous. Building upon a machine-learned text-image grounding model, TIGEr allows to evaluate caption quality not only based on how well a caption represents image content, but also on how well machine-generated captions match human-generated captions. Our empirical tests show that TIGEr has a higher consistency with human judgments than alternative existing metrics. We also comprehensively assess the metric’s effectiveness in caption evaluation by measuring the correlation between human judgments and metric scores.

pdf bib
Adversarial Domain Adaptation for Machine Reading Comprehension
Huazheng Wang | Zhe Gan | Xiaodong Liu | Jingjing Liu | Jianfeng Gao | Hongning Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose an Adversarial Domain Adaptation framework (AdaMRC), where (i) pseudo questions are first generated for unlabeled passages in the target domain, and then (ii) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach (i) is generalizable to different MRC models and datasets, (ii) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and (iii) can be extended to semi-supervised learning.

pdf bib
Domain Adaptive Text Style Transfer
Dianqi Li | Yizhe Zhang | Zhe Gan | Yu Cheng | Chris Brockett | Bill Dolan | Ming-Ting Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text style transfer without parallel data has achieved some practical success. However, in the scenario where less data is available, these methods may yield poor performance. In this paper, we examine domain adaptation for text style transfer to leverage massively available data from other domains. These data may demonstrate domain shift, which impedes the benefits of utilizing such data for training. To address this challenge, we propose simple yet effective domain adaptive text style transfer models, enabling domain-adaptive information exchange. The proposed models presumably learn from the source domain to: (i) distinguish stylized information and generic content information; (ii) maximally preserve content information; and (iii) adaptively transfer the styles in a domain-aware manner. We evaluate the proposed models on two style transfer tasks (sentiment and formality) over multiple target domains where only limited non-parallel data is available. Extensive experiments demonstrate the effectiveness of the proposed model compared to the baselines.

pdf bib
Patient Knowledge Distillation for BERT Model Compression
Siqi Sun | Yu Cheng | Zhe Gan | Jingjing Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Pre-trained language models such as BERT have proven to be highly effective for natural language processing (NLP) tasks. However, the high demand for computing resources in training such models hinders their application in practice. In order to alleviate this resource hunger in large-scale model training, we propose a Patient Knowledge Distillation approach to compress an original large model (teacher) into an equally-effective lightweight shallow network (student). Different from previous knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model patiently learns from multiple intermediate layers of the teacher model for incremental knowledge extraction, following two strategies: (i) PKD-Last: learning from the last k layers; and (ii) PKD-Skip: learning from every k layers. These two patient distillation schemes enable the exploitation of rich information in the teacher’s hidden layers, and encourage the student model to patiently learn from and imitate the teacher through a multi-layer distillation process. Empirically, this translates into improved results on multiple NLP tasks with a significant gain in training efficiency, without sacrificing model accuracy.

2017

pdf bib
Learning Generic Sentence Representations Using Convolutional Neural Networks
Zhe Gan | Yunchen Pu | Ricardo Henao | Chunyuan Li | Xiaodong He | Lawrence Carin
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We propose a new encoder-decoder approach to learn distributed sentence representations that are applicable to multiple purposes. The model is learned by using a convolutional neural network as an encoder to map an input sentence into a continuous vector, and using a long short-term memory recurrent neural network as a decoder. Several tasks are considered, including sentence reconstruction and future sentence prediction. Further, a hierarchical encoder-decoder model is proposed to encode a sentence to predict multiple future sentences. By training our models on a large collection of novels, we obtain a highly generic convolutional sentence encoder that performs well in practice. Experimental results on several benchmark datasets, and across a broad range of applications, demonstrate the superiority of the proposed model over competing methods.

pdf bib
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan | Chunyuan Li | Changyou Chen | Yunchen Pu | Qinliang Su | Lawrence Carin
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recurrent neural networks (RNNs) have shown promising performance for language modeling. However, traditional training of RNNs using back-propagation through time often suffers from overfitting. One reason for this is that stochastic optimization (used for large training sets) does not provide good estimates of model uncertainty. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (also appropriate for large training sets) to learn weight uncertainty in RNNs. It yields a principled Bayesian learning algorithm, adding gradient noise during training (enhancing exploration of the model-parameter space) and model averaging when testing. Extensive experiments on various RNN models and across a broad range of applications demonstrate the superiority of the proposed approach relative to stochastic optimization.