Zhongqiang Huang


2024

pdf bib
BLSP-Emo: Towards Empathetic Large Speech-Language Models
Chen Wang | Minpeng Liao | Zhongqiang Huang | Junhong Wu | Chengqing Zong | Jiajun Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.

pdf bib
Refine, Align, and Aggregate: Multi-view Linguistic Features Enhancement for Aspect Sentiment Triplet Extraction
Guixin Su | Mingmin Wu | Zhongqiang Huang | Yongcheng Zhang | Tongguan Wang | Yuxue Hu | Ying Sha
Findings of the Association for Computational Linguistics: ACL 2024

Aspect Sentiment Triplet Extraction (ASTE) aims to extract the triplets of aspect terms, their associated sentiment and opinion terms. Previous works based on different modeling paradigms have achieved promising results. However, these methods struggle to comprehensively explore the various specific relations between sentiment elements in multi-view linguistic features, which is the prior indication effect for facilitating sentiment triplets extraction, requiring to align and aggregate them to capture the complementary higher-order interactions. In this paper, we propose Multi-view Linguistic Features Enhancement (MvLFE) to explore the aforementioned prior indication effect in the “Refine, Align, and Aggregate” learning process. Specifically, we first introduce the relational graph attention network to encode the word-pair relations represented by each linguistic feature and refine them to pay more attention to the aspect-opinion pairs. Next, we employ the multi-view contrastive learning to align them at a fine-grained level in the contextual semantic space to maintain semantic consistency. Finally, we utilize the multi-semantic cross attention to capture and aggregate the complementary higher-order interactions between diverse linguistic features to enhance the aspect-opinion relations. Experimental results on several benchmark datasets show the effectiveness and robustness of our model, which achieves state-of-the-art performance.

pdf bib
wav2vec-S: Adapting Pre-trained Speech Models for Streaming
Biao Fu | Kai Fan | Minpeng Liao | Yidong Chen | Xiaodong Shi | Zhongqiang Huang
Findings of the Association for Computational Linguistics: ACL 2024

Pre-trained speech models, such as wav2vec 2.0, have significantly advanced speech-related tasks, including speech recognition and translation. However, their applicability in streaming scenarios is limited because these models are trained on complete utterances, leading to a mismatch with incremental streaming inputs. This paper identifies three critical design aspects within the architecture of wav2vec 2.0 and proposes a novel model, wav2vec-S, which incorporates simple modifications to ensure consistent speech representations during both training and inference phases for streaming speech inputs. Furthermore, we demonstrate that wav2vec-S models can be efficiently adapted from pre-trained wav2vec 2.0 models through continued pre-training and effectively finetuned to meet various latency requirements in downstream applications. Experiments on speech recognition and translation tasks show that wav2vec-S outperforms strong baseline models and achieves a superior balance between quality and latency.

pdf bib
Refining Idioms Semantics Comprehension via Contrastive Learning and Cross-Attention
Mingmin Wu | Guixin Su | Yongcheng Zhang | Zhongqiang Huang | Ying Sha
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chinese idioms on social media demand a nuanced understanding for correct usage. The Chinese idiom cloze test poses a unique challenge for machine reading comprehension due to the figurative meanings of idioms deviating from their literal interpretations, resulting in a semantic bias in models’ comprehension of idioms. Furthermore, given that the figurative meanings of many idioms are similar, their use as suboptimal options can interfere with optimal selection. Despite achieving some success in the Chinese idiom cloze test, existing methods based on deep learning still struggle to comprehensively grasp idiom semantics due to the aforementioned issues. To tackle these challenges, we introduce a Refining Idioms Semantics Comprehension Framework (RISCF) to capture the comprehensive idioms semantics. Specifically, we propose a semantic sense contrastive learning module to enhance the representation of idiom semantics, diminishing the semantic bias between figurative and literal meanings of idioms. Meanwhile, we propose an interference-resistant cross-attention module to attenuate the interference of suboptimal options, which considers the interaction between the candidate idioms and the blank space in the context. Experimental results on the benchmark datasets demonstrate the effectiveness of our RISCF model, which outperforms state-of-the-art methods significantly.

2023

pdf bib
Better Simultaneous Translation with Monotonic Knowledge Distillation
Shushu Wang | Jing Wu | Kai Fan | Wei Luo | Jun Xiao | Zhongqiang Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Simultaneous machine translation (SiMT) presents a unique challenge as it requires generating target tokens before the source sentence is fully consumed. This can lead to the hallucination problem, where target tokens are generated without support from the source sentence. The prefix-to-prefix training data used to train SiMT models are not always parallel, due to divergent word order between the source and target languages, and can contribute to the problem. In this paper, we propose a novel approach that leverages traditional translation models as teachers and employs a two-stage beam search algorithm to generate monotonic yet accurate reference translations for sequence-level knowledge distillation. Experimental results demonstrate the significant improvements achieved by our approach over multiple strong SiMT baselines, leading to new state-of-the-art performance across various language pairs. Notably, when evaluated on a monotonic version of the WMT15 De-En test set, which includes references generated in a more monotonic style by professional translators, our approach achieves even more substantial improvement over the baselines. The source code and data are publicly available for further exploration.

pdf bib
Entity-to-Text based Data Augmentation for various Named Entity Recognition Tasks
Xuming Hu | Yong Jiang | Aiwei Liu | Zhongqiang Huang | Pengjun Xie | Fei Huang | Lijie Wen | Philip S. Yu
Findings of the Association for Computational Linguistics: ACL 2023

Data augmentation techniques have been used to alleviate the problem of scarce labeled data in various NER tasks (flat, nested, and discontinuous NER tasks). Existing augmentation techniques either manipulate the words in the original text that break the semantic coherence of the text, or exploit generative models that ignore preserving entities in the original text, which impedes the use of augmentation techniques on nested and discontinuous NER tasks. In this work, we propose a novel Entity-to-Text based data augmentation technique named EnTDA to add, delete, replace or swap entities in the entity list of the original texts, and adopt these augmented entity lists to generate semantically coherent and entity preserving texts for various NER tasks. Furthermore, we introduce a diversity beam search to increase the diversity during the text generation process. Experiments on thirteen NER datasets across three tasks (flat, nested, and discontinuous NER tasks) and two settings (full data and low resource settings) show that EnTDA could bring more performance improvements compared to the baseline augmentation techniques.

pdf bib
Translate the Beauty in Songs: Jointly Learning to Align Melody and Translate Lyrics
Chengxi Li | Kai Fan | Jiajun Bu | Boxing Chen | Zhongqiang Huang | Zhi Yu
Findings of the Association for Computational Linguistics: EMNLP 2023

Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by jointly modeling lyric translation and lyrics-melody alignment. It is a novel encoder-decoder framework that can simultaneously translate the source lyrics and determine the number of aligned notes at each decoding step through an adaptive note grouping module. To address data scarcity, we commissioned a small amount of training data annotated specifically for this task and used large amounts of automatic training data through back-translation. Experiments conducted on an English-Chinese song translation data set show the effectiveness of our model in both automatic and human evaluations.

pdf bib
Towards Zero-shot Learning for End-to-end Cross-modal Translation Models
Jichen Yang | Kai Fan | Minpeng Liao | Boxing Chen | Zhongqiang Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

One of the main problems in speech translation is the mismatches between different modalities. The second problem, scarcity of parallel data covering multiple modalities, means that the end-to-end multi-modal models tend to perform worse than cascade models, although there are exceptions under favorable conditions. To address these problems, we propose an end-to-end zero-shot speech translation model, connecting two pre-trained uni-modality modules via word rotator’s distance. The model retains the ability of zero-shot, which is like cascade models, and also can be trained in an end-to-end style to avoid error propagation. Our comprehensive experiments on the MuST-C benchmarks show that our end-to-end zero-shot approach performs better than or as well as those of the CTC-based cascade models and that our end-to-end model with supervised training also matches the latest baselines.

pdf bib
Adaptive Policy with Wait-k Model for Simultaneous Translation
Libo Zhao | Kai Fan | Wei Luo | Wu Jing | Shushu Wang | Ziqian Zeng | Zhongqiang Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Simultaneous machine translation (SiMT) requires a robust read/write policy in conjunction with a high-quality translation model. Traditional methods rely on either a fixed wait-k policy coupled with a standalone wait-k translation model, or an adaptive policy jointly trained with the translation model. In this study, we propose a more flexible approach by decoupling the adaptive policy model from the translation model. Our motivation stems from the observation that a standalone multi-path wait-k model performs competitively with adaptive policies utilized in state-of-the-art SiMT approaches. Specifically, we introduce DaP, a divergence-based adaptive policy, that makes read/write decisions for any translation model based on the potential divergence in translation distributions resulting from future information. DaP extends a frozen wait-k model with lightweight parameters, and is both memory and computation efficient. Experimental results across various benchmarks demonstrate that our approach offers an improved trade-off between translation accuracy and latency, outperforming strong baselines.

pdf bib
Training Simultaneous Speech Translation with Robust and Random Wait-k-Tokens Strategy
Linlin Zhang | Kai Fan | Jiajun Bu | Zhongqiang Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Simultaneous Speech Translation (SimulST) is a task focused on ensuring high-quality translation of speech in low-latency situations. Despite this, the modality gap (e.g., unknown word boundaries) between audio and text presents a challenge. This gap hinders the effective application of policies from simultaneous text translation (SimulMT) and compromises the performance of offline speech translation. To address this issue, we first leverage the Montreal Forced Aligner (MFA) and utilize audio transcription pairs in pre-training the acoustic encoder, and introduce a token-level cross-modal alignment that allows the wait-k policy from SimulMT to better adapt to SimulST. This token-level boundary alignment simplifies the decision-making process for predicting read/write actions, as if the decoder were directly processing text tokens. Subsequently, to optimize the SimulST task, we propose a robust and random wait-k-tokens strategy. This strategy allows a single model to meet various latency requirements and minimizes error accumulation of boundary alignment during inference. Our experiments on the MuST-C dataset show that our method achieves better trade-off between translation quality and latency.

pdf bib
Adapting Offline Speech Translation Models for Streaming with Future-Aware Distillation and Inference
Biao Fu | Minpeng Liao | Kai Fan | Zhongqiang Huang | Boxing Chen | Yidong Chen | Xiaodong Shi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A popular approach to streaming speech translation is to employ a single offline model with a wait-k policy to support different latency requirements, which is simpler than training multiple online models with different latency constraints. However, there is a mismatch problem in using a model trained with complete utterances for streaming inference with partial input. We demonstrate that speech representations extracted at the end of a streaming input are significantly different from those extracted from a complete utterance. To address this issue, we propose a new approach called Future-Aware Streaming Translation (FAST) that adapts an offline ST model for streaming input. FAST includes a Future-Aware Inference (FAI) strategy that incorporates future context through a trainable masked embedding, and a Future-Aware Distillation (FAD) framework that transfers future context from an approximation of full speech to streaming input. Our experiments on the MuST-C EnDe, EnEs, and EnFr benchmarks show that FAST achieves better trade-offs between translation quality and latency than strong baselines. Extensive analyses suggest that our methods effectively alleviate the aforementioned mismatch problem between offline training and online inference.

2022

pdf bib
ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition
Xinyu Wang | Min Gui | Yong Jiang | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Kewei Tu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recently, Multi-modal Named Entity Recognition (MNER) has attracted a lot of attention. Most of the work utilizes image information through region-level visual representations obtained from a pretrained object detector and relies on an attention mechanism to model the interactions between image and text representations. However, it is difficult to model such interactions as image and text representations are trained separately on the data of their respective modality and are not aligned in the same space. As text representations take the most important role in MNER, in this paper, we propose Image-text Alignments (ITA) to align image features into the textual space, so that the attention mechanism in transformer-based pretrained textual embeddings can be better utilized. ITA first aligns the image into regional object tags, image-level captions and optical characters as visual contexts, concatenates them with the input texts as a new cross-modal input, and then feeds it into a pretrained textual embedding model. This makes it easier for the attention module of a pretrained textual embedding model to model the interaction between the two modalities since they are both represented in the textual space. ITA further aligns the output distributions predicted from the cross-modal input and textual input views so that the MNER model can be more practical in dealing with text-only inputs and robust to noises from images. In our experiments, we show that ITA models can achieve state-of-the-art accuracy on multi-modal Named Entity Recognition datasets, even without image information.

pdf bib
Discrete Cross-Modal Alignment Enables Zero-Shot Speech Translation
Chen Wang | Yuchen Liu | Boxing Chen | Jiajun Zhang | Wei Luo | Zhongqiang Huang | Chengqing Zong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

End-to-end Speech Translation (ST) aims at translating the source language speech into target language text without generating the intermediate transcriptions. However, the training of end-to-end methods relies on parallel ST data, which are difficult and expensive to obtain. Fortunately, the supervised data for automatic speech recognition (ASR) and machine translation (MT) are usually more accessible, making zero-shot speech translation a potential direction. Existing zero-shot methods fail to align the two modalities of speech and text into a shared semantic space, resulting in much worse performance compared to the supervised ST methods. In order to enable zero-shot ST, we propose a novel Discrete Cross-Modal Alignment (DCMA) method that employs a shared discrete vocabulary space to accommodate and match both modalities of speech and text. Specifically, we introduce a vector quantization module to discretize the continuous representations of speech and text into a finite set of virtual tokens, and use ASR data to map corresponding speech and text to the same virtual token in a shared codebook. This way, source language speech can be embedded in the same semantic space as the source language text, which can be then transformed into target language text with an MT module. Experiments on multiple language pairs demonstrate that our zero-shot ST method significantly improves the SOTA, and even performers on par with the strong supervised ST baselines.

2021

pdf bib
Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor
Xinyu Wang | Yong Jiang | Zhaohui Yan | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge distillation is a critical technique to transfer knowledge between models, typically from a large model (the teacher) to a more fine-grained one (the student). The objective function of knowledge distillation is typically the cross-entropy between the teacher and the student’s output distributions. However, for structured prediction problems, the output space is exponential in size; therefore, the cross-entropy objective becomes intractable to compute and optimize directly. In this paper, we derive a factorized form of the knowledge distillation objective for structured prediction, which is tractable for many typical choices of the teacher and student models. In particular, we show the tractability and empirical effectiveness of structural knowledge distillation between sequence labeling and dependency parsing models under four different scenarios: 1) the teacher and student share the same factorization form of the output structure scoring function; 2) the student factorization produces more fine-grained substructures than the teacher factorization; 3) the teacher factorization produces more fine-grained substructures than the student factorization; 4) the factorization forms from the teacher and the student are incompatible.

pdf bib
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent advances in Named Entity Recognition (NER) show that document-level contexts can significantly improve model performance. In many application scenarios, however, such contexts are not available. In this paper, we propose to find external contexts of a sentence by retrieving and selecting a set of semantically relevant texts through a search engine, with the original sentence as the query. We find empirically that the contextual representations computed on the retrieval-based input view, constructed through the concatenation of a sentence and its external contexts, can achieve significantly improved performance compared to the original input view based only on the sentence. Furthermore, we can improve the model performance of both input views by Cooperative Learning, a training method that encourages the two input views to produce similar contextual representations or output label distributions. Experiments show that our approach can achieve new state-of-the-art performance on 8 NER data sets across 5 domains.

pdf bib
Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.

pdf bib
Multi-View Cross-Lingual Structured Prediction with Minimum Supervision
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In structured prediction problems, cross-lingual transfer learning is an efficient way to train quality models for low-resource languages, and further improvement can be obtained by learning from multiple source languages. However, not all source models are created equal and some may hurt performance on the target language. Previous work has explored the similarity between source and target sentences as an approximate measure of strength for different source models. In this paper, we propose a multi-view framework, by leveraging a small number of labeled target sentences, to effectively combine multiple source models into an aggregated source view at different granularity levels (language, sentence, or sub-structure), and transfer it to a target view based on a task-specific model. By encouraging the two views to interact with each other, our framework can dynamically adjust the confidence level of each source model and improve the performance of both views during training. Experiments for three structured prediction tasks on sixteen data sets show that our framework achieves significant improvement over all existing approaches, including these with access to additional source language data.

pdf bib
Risk Minimization for Zero-shot Sequence Labeling
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Zero-shot sequence labeling aims to build a sequence labeler without human-annotated datasets. One straightforward approach is utilizing existing systems (source models) to generate pseudo-labeled datasets and train a target sequence labeler accordingly. However, due to the gap between the source and the target languages/domains, this approach may fail to recover the true labels. In this paper, we propose a novel unified framework for zero-shot sequence labeling with minimum risk training and design a new decomposable risk function that models the relations between the predicted labels from the source models and the true labels. By making the risk function trainable, we draw a connection between minimum risk training and latent variable model learning. We propose a unified learning algorithm based on the expectation maximization (EM) algorithm. We extensively evaluate our proposed approaches on cross-lingual/domain sequence labeling tasks over twenty-one datasets. The results show that our approaches outperform state-of-the-art baseline systems.

pdf bib
Manifold Adversarial Augmentation for Neural Machine Translation
Guandan Chen | Kai Fan | Kaibo Zhang | Boxing Chen | Zhongqiang Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations
Xinyin Ma | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Weiming Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.

pdf bib
Word Reordering for Zero-shot Cross-lingual Structured Prediction
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Adapting word order from one language to another is a key problem in cross-lingual structured prediction. Current sentence encoders (e.g., RNN, Transformer with position embeddings) are usually word order sensitive. Even with uniform word form representations (MUSE, mBERT), word order discrepancies may hurt the adaptation of models. In this paper, we build structured prediction models with bag-of-words inputs, and introduce a new reordering module to organizing words following the source language order, which learns task-specific reordering strategies from a general-purpose order predictor model. Experiments on zero-shot cross-lingual dependency parsing, POS tagging, and morphological tagging show that our model can significantly improve target language performances, especially for languages that are distant from the source language.

pdf bib
A Unified Encoding of Structures in Transition Systems
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transition systems usually contain various dynamic structures (e.g., stacks, buffers). An ideal transition-based model should encode these structures completely and efficiently. Previous works relying on templates or neural network structures either only encode partial structure information or suffer from computation efficiency. In this paper, we propose a novel attention-based encoder unifying representation of all structures in a transition system. Specifically, we separate two views of items on structures, namely structure-invariant view and structure-dependent view. With the help of parallel-friendly attention network, we are able to encoding transition states with O(1) additional complexity (with respect to basic feature extractors). Experiments on the PTB and UD show that our proposed method significantly improves the test speed and achieves the best transition-based model, and is comparable to state-of-the-art methods.

2020

pdf bib
An Investigation of Potential Function Designs for Neural CRF
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

The neural linear-chain CRF model is one of the most widely-used approach to sequence labeling. In this paper, we investigate a series of increasingly expressive potential functions for neural CRF models, which not only integrate the emission and transition functions, but also explicitly take the representations of the contextual words as input. Our extensive experiments show that the decomposed quadrilinear potential function based on the vector representations of two neighboring labels and two neighboring words consistently achieves the best performance.

pdf bib
More Embeddings, Better Sequence Labelers?
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent work proposes a family of contextual embeddings that significantly improves the accuracy of sequence labelers over non-contextual embeddings. However, there is no definite conclusion on whether we can build better sequence labelers by combining different kinds of embeddings in various settings. In this paper, we conduct extensive experiments on 3 tasks over 18 datasets and 8 languages to study the accuracy of sequence labeling with various embedding concatenations and make three observations: (1) concatenating more embedding variants leads to better accuracy in rich-resource and cross-domain settings and some conditions of low-resource settings; (2) concatenating contextual sub-word embeddings with contextual character embeddings hurts the accuracy in extremely low-resource settings; (3) based on the conclusion of (1), concatenating additional similar contextual embeddings cannot lead to further improvements. We hope these conclusions can help people build stronger sequence labelers in various settings.

pdf bib
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.

2019

pdf bib
Weakly Supervised Attentional Model for Low Resource Ad-hoc Cross-lingual Information Retrieval
Lingjun Zhao | Rabih Zbib | Zhuolin Jiang | Damianos Karakos | Zhongqiang Huang
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

We propose a weakly supervised neural model for Ad-hoc Cross-lingual Information Retrieval (CLIR) from low-resource languages. Low resource languages often lack relevance annotations for CLIR, and when available the training data usually has limited coverage for possible queries. In this paper, we design a model which does not require relevance annotations, instead it is trained on samples extracted from translation corpora as weak supervision. This model relies on an attention mechanism to learn spans in the foreign sentence that are relevant to the query. We report experiments on two low resource languages: Swahili and Tagalog, trained on less that 100k parallel sentences each. The proposed model achieves 19 MAP points improvement compared to using CNNs for feature extraction, 12 points improvement from machine translation-based CLIR, and up to 6 points improvement compared to probabilistic CLIR models.

2015

pdf bib
Statistical Machine Translation Features with Multitask Tensor Networks
Hendra Setiawan | Zhongqiang Huang | Jacob Devlin | Thomas Lamar | Rabih Zbib | Richard Schwartz | John Makhoul
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Fast and Robust Neural Network Joint Models for Statistical Machine Translation
Jacob Devlin | Rabih Zbib | Zhongqiang Huang | Thomas Lamar | Richard Schwartz | John Makhoul
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Factored Soft Source Syntactic Constraints for Hierarchical Machine Translation
Zhongqiang Huang | Jacob Devlin | Rabih Zbib
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2011

pdf bib
Feature-Rich Log-Linear Lexical Model for Latent Variable PCFG Grammars
Zhongqiang Huang | Mary Harper
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Self-Training with Products of Latent Variable Grammars
Zhongqiang Huang | Mary Harper | Slav Petrov
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

pdf bib
Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions
Zhongqiang Huang | Martin Čmejrek | Bowen Zhou
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

pdf bib
Lessons Learned in Part-of-Speech Tagging of Conversational Speech
Vladimir Eidelman | Zhongqiang Huang | Mary Harper
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

pdf bib
Appropriately Handled Prosodic Breaks Help PCFG Parsing
Zhongqiang Huang | Mary Harper
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

2009

pdf bib
Improving A Simple Bigram HMM Part-of-Speech Tagger by Latent Annotation and Self-Training
Zhongqiang Huang | Vladimir Eidelman | Mary Harper
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers

pdf bib
Self-Training PCFG Grammars with Latent Annotations Across Languages
Zhongqiang Huang | Mary Harper
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

2007

pdf bib
Mandarin Part-of-Speech Tagging and Discriminative Reranking
Zhongqiang Huang | Mary Harper | Wen Wang
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)

2006

pdf bib
An Open Source Prosodic Feature Extraction Tool
Zhongqiang Huang | Lei Chen | Mary Harper
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

There has been an increasing interest in utilizing a wide variety of knowledge sources in order to perform automatic tagging of speech events, such as sentence boundaries and dialogue acts. In addition to the word spoken, the prosodic content of the speech has been proved quite valuable in a variety of spoken language processing tasks such as sentence segmentation and tagging, disfluency detection, dialog act segmentation and tagging, and speaker recognition. In this paper, we report on an open source prosodic feature extraction tool based on Praat, with a description of the prosodic features and the implementation details, as well as a discussion of its extension capability. We also evaluate our tool on a sentence boundary detection task and report the system performance on the NIST RT04 CTS data.