Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, Danqi Chen (Editors)


Anthology ID:
D19-58
Month:
November
Year:
2019
Address:
Hong Kong, China
Venue:
WS
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/D19-58
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/D19-58.pdf

pdf bib
Proceedings of the 2nd Workshop on Machine Reading for Question Answering
Adam Fisch | Alon Talmor | Robin Jia | Minjoon Seo | Eunsol Choi | Danqi Chen

pdf bib
MRQA 2019 Shared Task: Evaluating Generalization in Reading Comprehension
Adam Fisch | Alon Talmor | Robin Jia | Minjoon Seo | Eunsol Choi | Danqi Chen

We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the rest were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT.

pdf bib
Inspecting Unification of Encoding and Matching with Transformer: A Case Study of Machine Reading Comprehension
Hangbo Bao | Li Dong | Furu Wei | Wenhui Wang | Nan Yang | Lei Cui | Songhao Piao | Ming Zhou

Most machine reading comprehension (MRC) models separately handle encoding and matching with different network architectures. In contrast, pretrained language models with Transformer layers, such as GPT (Radford et al., 2018) and BERT (Devlin et al., 2018), have achieved competitive performance on MRC. A research question that naturally arises is: apart from the benefits of pre-training, how many performance gain comes from the unified network architecture. In this work, we evaluate and analyze unifying encoding and matching components with Transformer for the MRC task. Experimental results on SQuAD show that the unified model outperforms previous networks that separately treat encoding and matching. We also introduce a metric to inspect whether a Transformer layer tends to perform encoding or matching. The analysis results show that the unified model learns different modeling strategies compared with previous manually-designed models.

pdf bib
CALOR-QUEST : generating a training corpus for Machine Reading Comprehension models from shallow semantic annotations
Frederic Bechet | Cindy Aloui | Delphine Charlet | Geraldine Damnati | Johannes Heinecke | Alexis Nasr | Frederic Herledan

Machine reading comprehension is a task related to Question-Answering where questions are not generic in scope but are related to a particular document. Recently very large corpora (SQuAD, MS MARCO) containing triplets (document, question, answer) were made available to the scientific community to develop supervised methods based on deep neural networks with promising results. These methods need very large training corpus to be efficient, however such kind of data only exists for English and Chinese at the moment. The aim of this study is the development of such resources for other languages by proposing to generate in a semi-automatic way questions from the semantic Frame analysis of large corpora. The collect of natural questions is reduced to a validation/test set. We applied this method on the CALOR-Frame French corpus to develop the CALOR-QUEST resource presented in this paper.

pdf bib
Improving Question Answering with External Knowledge
Xiaoman Pan | Kai Sun | Dian Yu | Jianshu Chen | Heng Ji | Claire Cardie | Dong Yu

We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective methods for exploiting two sources of external knowledge for subject-area QA. The first enriches the original subject-area reference corpus with relevant text snippets extracted from an open-domain resource (i.e., Wikipedia) that cover potentially ambiguous concepts in the question and answer options. As in other QA research, the second method simply increases the amount of training data by appending additional in-domain subject-area instances. Experiments on three challenging multiple-choice science QA tasks (i.e., ARC-Easy, ARC-Challenge, and OpenBookQA) demonstrate the effectiveness of our methods: in comparison to the previous state-of-the-art, we obtain absolute gains in accuracy of up to 8.1%, 13.0%, and 12.8%, respectively. While we observe consistent gains when we introduce knowledge from Wikipedia, we find that employing additional QA training instances is not uniformly helpful: performance degrades when the added instances exhibit a higher level of difficulty than the original training data. As one of the first studies on exploiting unstructured external knowledge for subject-area QA, we hope our methods, observations, and discussion of the exposed limitations may shed light on further developments in the area.

pdf bib
Answer-Supervised Question Reformulation for Enhancing Conversational Machine Comprehension
Qian Li | Hui Su | Cheng Niu | Daling Wang | Zekang Li | Shi Feng | Yifei Zhang

In conversational machine comprehension, it has become one of the research hotspots integrating conversational history information through question reformulation for obtaining better answers. However, the existing question reformulation models are trained only using supervised question labels annotated by annotators without considering any feedback information from answers. In this paper, we propose a novel Answer-Supervised Question Reformulation (ASQR) model for enhancing conversational machine comprehension with reinforcement learning technology. ASQR utilizes a pointer-copy-based question reformulation model as an agent, takes an action to predict the next word, and observes a reward for the whole sentence state after generating the end-of-sequence token. The experimental results on QuAC dataset prove that our ASQR model is more effective in conversational machine comprehension. Moreover, pretraining is essential in reinforcement learning models, so we provide a high-quality annotated dataset for question reformulation by sampling a part of QuAC dataset.

pdf bib
Simple yet Effective Bridge Reasoning for Open-Domain Multi-Hop Question Answering
Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Hong Wang | Shiyu Chang | Murray Campbell | William Yang Wang

A key challenge of multi-hop question answering (QA) in the open-domain setting is to accurately retrieve the supporting passages from a large corpus. Existing work on open-domain QA typically relies on off-the-shelf information retrieval (IR) techniques to retrieve answer passages, i.e., the passages containing the groundtruth answers. However, IR-based approaches are insufficient for multi-hop questions, as the topic of the second or further hops is not explicitly covered by the question. To resolve this issue, we introduce a new subproblem of open-domain multi-hop QA, which aims to recognize the bridge (i.e., the anchor that links to the answer passage) from the context of a set of start passages with a reading comprehension model. This model, the bridge reasoner, is trained with a weakly supervised signal and produces the candidate answer passages for the passage reader to extract the answer. On the full-wiki HotpotQA benchmark, we significantly improve the baseline method by 14 point F1. Without using any memory inefficient contextual embeddings, our result is also competitive with the state-of-the-art that applies BERT in multiple modules.

pdf bib
Improving the Robustness of Deep Reading Comprehension Models by Leveraging Syntax Prior
Bowen Wu | Haoyang Huang | Zongsheng Wang | Qihang Feng | Jingsong Yu | Baoxun Wang

Despite the remarkable progress on Machine Reading Comprehension (MRC) with the help of open-source datasets, recent studies indicate that most of the current MRC systems unfortunately suffer from weak robustness against adversarial samples. To address this issue, we attempt to take sentence syntax as the leverage in the answer predicting process which previously only takes account of phrase-level semantics. Furthermore, to better utilize the sentence syntax and improve the robustness, we propose a Syntactic Leveraging Network, which is designed to deal with adversarial samples by exploiting the syntactic elements of a question. The experiment results indicate that our method is promising for improving the generalization and robustness of MRC models against the influence of adversarial samples, with performance well-maintained.

pdf bib
Reasoning Over Paragraph Effects in Situations
Kevin Lin | Oyvind Tafjord | Peter Clark | Matt Gardner

A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., “animal pollinators increase efficiency of fertilization in flowers”), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.

pdf bib
Towards Answer-unaware Conversational Question Generation
Mao Nakanishi | Tetsunori Kobayashi | Yoshihiko Hayashi

Conversational question generation is a novel area of NLP research which has a range of potential applications. This paper is first to presents a framework for conversational question generation that is unaware of the corresponding answers. To properly generate a question coherent to the grounding text and the current conversation history, the proposed framework first locates the focus of a question in the text passage, and then identifies the question pattern that leads the sequential generation of the words in a question. The experiments using the CoQA dataset demonstrate that the quality of generated questions greatly improves if the question foci and the question patterns are correctly identified. In addition, it was shown that the question foci, even estimated with a reasonable accuracy, could contribute to the quality improvement. These results established that our research direction may be promising, but at the same time revealed that the identification of question patterns is a challenging issue, and it has to be largely refined to achieve a better quality in the end-to-end automatic question generation.

pdf bib
Cross-Task Knowledge Transfer for Query-Based Text Summarization
Elozino Egonmwan | Vittorio Castelli | Md Arafat Sultan

We demonstrate the viability of knowledge transfer between two related tasks: machine reading comprehension (MRC) and query-based text summarization. Using an MRC model trained on the SQuAD1.1 dataset as a core system component, we first build an extractive query-based summarizer. For better precision, this summarizer also compresses the output of the MRC model using a novel sentence compression technique. We further leverage pre-trained machine translation systems to abstract our extracted summaries. Our models achieve state-of-the-art results on the publicly available CNN/Daily Mail and Debatepedia datasets, and can serve as simple yet powerful baselines for future systems. We also hope that these results will encourage research on transfer learning from large MRC corpora to query-based summarization.

pdf bib
Book QA: Stories of Challenges and Opportunities
Stefanos Angelidis | Lea Frermann | Diego Marcheggiani | Roi Blanco | Lluís Màrquez

We present a system for answering questions based on the full text of books (BookQA), which first selects book passages given a question at hand, and then uses a memory network to reason and predict an answer. To improve generalization, we pretrain our memory network using artificial questions generated from book sentences. We experiment with the recently published NarrativeQA corpus, on the subset of Who questions, which expect book characters as answers. We experimentally show that BERT-based retrieval and pretraining improve over baseline results significantly. At the same time, we confirm that NarrativeQA is a highly challenging data set, and that there is need for novel research in order to achieve high-precision BookQA results. We analyze some of the bottlenecks of the current approach, and we argue that more research is needed on text representation, retrieval of relevant passages, and reasoning, including commonsense knowledge.

pdf bib
FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension
Yi-Ting Yeh | Yun-Nung Chen

Conversational machine comprehension requires deep understanding of the dialogue flow, and the prior work proposed FlowQA to implicitly model the context representations in reasoning for better understanding. This paper proposes to explicitly model the information gain through the dialogue reasoning in order to allow the model to focus on more informative cues. The proposed model achieves the state-of-the-art performance in a conversational QA dataset QuAC and sequential instruction understanding dataset SCONE, which shows the effectiveness of the proposed mechanism and demonstrate its capability of generalization to different QA models and tasks.

pdf bib
Do Multi-hop Readers Dream of Reasoning Chains?
Haoyu Wang | Mo Yu | Xiaoxiao Guo | Rajarshi Das | Wenhan Xiong | Tian Gao

General Question Answering (QA) systems over texts require the multi-hop reasoning capability, i.e. the ability to reason with information collected from multiple passages to derive the answer. In this paper we conduct a systematic analysis to assess such an ability of various existing models proposed for multi-hop QA tasks. Specifically, our analysis investigates that whether providing the full reasoning chain of multiple passages, instead of just one final passage where the answer appears, could improve the performance of the existing QA models. Surprisingly, when using the additional evidence passages, the improvements of all the existing multi-hop reading approaches are rather limited, with the highest error reduction of 5.8% on F1 (corresponding to 1.3% improvement) from the BERT model. To better understand whether the reasoning chains indeed could help find the correct answers, we further develop a co-matching-based method that leads to 13.1% error reduction with passage chains when applied to two of our base readers (including BERT). Our results demonstrate the existence of the potential improvement using explicit multi-hop reasoning and the necessity to develop models with better reasoning abilities.

pdf bib
Machine Comprehension Improves Domain-Specific Japanese Predicate-Argument Structure Analysis
Norio Takahashi | Tomohide Shibata | Daisuke Kawahara | Sadao Kurohashi

To improve the accuracy of predicate-argument structure (PAS) analysis, large-scale training data and knowledge for PAS analysis are indispensable. We focus on a specific domain, specifically Japanese blogs on driving, and construct two wide-coverage datasets as a form of QA using crowdsourcing: a PAS-QA dataset and a reading comprehension QA (RC-QA) dataset. We train a machine comprehension (MC) model based on these datasets to perform PAS analysis. Our experiments show that a stepwise training method is the most effective, which pre-trains an MC model based on the RC-QA dataset to acquire domain knowledge and then fine-tunes based on the PAS-QA dataset.

pdf bib
On Making Reading Comprehension More Comprehensive
Matt Gardner | Jonathan Berant | Hannaneh Hajishirzi | Alon Talmor | Sewon Min

Machine reading comprehension, the task of evaluating a machine’s ability to comprehend a passage of text, has seen a surge in popularity in recent years. There are many datasets that are targeted at reading comprehension, and many systems that perform as well as humans on some of these datasets. Despite all of this interest, there is no work that systematically defines what reading comprehension is. In this work, we justify a question answering approach to reading comprehension and describe the various kinds of questions one might use to more fully test a system’s comprehension of a passage, moving beyond questions that only probe local predicate-argument structures. The main pitfall of this approach is that questions can easily have surface cues or other biases that allow a model to shortcut the intended reasoning process. We discuss ways proposed in current literature to mitigate these shortcuts, and we conclude with recommendations for future dataset collection efforts.

pdf bib
Multi-step Entity-centric Information Retrieval for Multi-Hop Question Answering
Rajarshi Das | Ameya Godbole | Dilip Kavarthapu | Zhiyu Gong | Abhishek Singhal | Mo Yu | Xiaoxiao Guo | Tian Gao | Hamed Zamani | Manzil Zaheer | Andrew McCallum

Multi-hop question answering (QA) requires an information retrieval (IR) system that can find multiple supporting evidence needed to answer the question, making the retrieval process very challenging. This paper introduces an IR technique that uses information of entities present in the initially retrieved evidence to learn to ‘hop’ to other relevant evidence. In a setting, with more than 5 million Wikipedia paragraphs, our approach leads to significant boost in retrieval performance. The retrieved evidence also increased the performance of an existing QA model (without any training) on the benchmark by 10.59 F1.

pdf bib
Evaluating Question Answering Evaluation
Anthony Chen | Gabriel Stanovsky | Sameer Singh | Matt Gardner

As the complexity of question answering (QA) datasets evolve, moving away from restricted formats like span extraction and multiple-choice (MC) to free-form answer generation, it is imperative to understand how well current metrics perform in evaluating QA. This is especially important as existing metrics (BLEU, ROUGE, METEOR, and F1) are computed using n-gram similarity and have a number of well-known drawbacks. In this work, we study the suitability of existing metrics in QA. For generative QA, we show that while current metrics do well on existing datasets, converting multiple-choice datasets into free-response datasets is challenging for current metrics. We also look at span-based QA, where F1 is a reasonable metric. We show that F1 may not be suitable for all extractive QA tasks depending on the answer types. Our study suggests that while current metrics may be suitable for existing QA datasets, they limit the complexity of QA datasets that can be created. This is especially true in the context of free-form QA, where we would like our models to be able to generate more complex and abstractive answers, thus necessitating new metrics that go beyond n-gram based matching. As a step towards a better QA metric, we explore using BERTScore, a recently proposed metric for evaluating translation, for QA. We find that although it fails to provide stronger correlation with human judgements, future work focused on tailoring a BERT-based metric to QA evaluation may prove fruitful.

pdf bib
Bend but Don’t Break? Multi-Challenge Stress Test for QA Models
Hemant Pugaliya | James Route | Kaixin Ma | Yixuan Geng | Eric Nyberg

The field of question answering (QA) has seen rapid growth in new tasks and modeling approaches in recent years. Large scale datasets and focus on challenging linguistic phenomena have driven development in neural models, some of which have achieved parity with human performance in limited cases. However, an examination of state-of-the-art model output reveals that a gap remains in reasoning ability compared to a human, and performance tends to degrade when models are exposed to less-constrained tasks. We are interested in more clearly defining the strengths and limitations of leading models across diverse QA challenges, intending to help future researchers with identifying pathways to generalizable performance. We conduct extensive qualitative and quantitative analyses on the results of four models across four datasets and relate common errors to model capabilities. We also illustrate limitations in the datasets we examine and discuss a way forward for achieving generalizable models and datasets that broadly test QA capabilities.

pdf bib
ReQA: An Evaluation for End-to-End Answer Retrieval Models
Amin Ahmad | Noah Constant | Yinfei Yang | Daniel Cer

Popular QA benchmarks like SQuAD have driven progress on the task of identifying answer spans within a specific passage, with models now surpassing human performance. However, retrieving relevant answers from a huge corpus of documents is still a challenging problem, and places different requirements on the model architecture. There is growing interest in developing scalable answer retrieval models trained end-to-end, bypassing the typical document retrieval step. In this paper, we introduce Retrieval Question-Answering (ReQA), a benchmark for evaluating large-scale sentence-level answer retrieval models. We establish baselines using both neural encoding models as well as classical information retrieval techniques. We release our evaluation code to encourage further work on this challenging task.

pdf bib
Comprehensive Multi-Dataset Evaluation of Reading Comprehension
Dheeru Dua | Ananth Gottumukkala | Alon Talmor | Sameer Singh | Matt Gardner

Reading comprehension is one of the crucial tasks for furthering research in natural language understanding. A lot of diverse reading comprehension datasets have recently been introduced to study various phenomena in natural language, ranging from simple paraphrase matching and entity typing to entity tracking and understanding the implications of the context. Given the availability of many such datasets, comprehensive and reliable evaluation is tedious and time-consuming for researchers working on this problem. We present an evaluation server, ORB, that reports performance on seven diverse reading comprehension datasets, encouraging and facilitating testing a single model’s capability in understanding a wide variety of reading phenomena. The evaluation server places no restrictions on how models are trained, so it is a suitable test bed for exploring training paradigms and representation learning for general reading facility. As more suitable datasets are released, they will be added to the evaluation server. We also collect and include synthetic augmentations for these datasets, testing how well models can handle out-of-domain questions.

pdf bib
A Recurrent BERT-based Model for Question Generation
Ying-Hong Chan | Yao-Chung Fan

In this study, we investigate the employment of the pre-trained BERT language model to tackle question generation tasks. We introduce three neural architectures built on top of BERT for question generation tasks. The first one is a straightforward BERT employment, which reveals the defects of directly using BERT for text generation. Accordingly, we propose another two models by restructuring our BERT employment into a sequential manner for taking information from previous decoded results. Our models are trained and evaluated on the recent question-answering dataset SQuAD. Experiment results show that our best model yields state-of-the-art performance which advances the BLEU 4 score of the existing best models from 16.85 to 22.17.

pdf bib
Let Me Know What to Ask: Interrogative-Word-Aware Question Generation
Junmo Kang | Haritz Puerto San Roman | Sung-Hyon Myaeng

Question Generation (QG) is a Natural Language Processing (NLP) task that aids advances in Question Answering (QA) and conversational assistants. Existing models focus on generating a question based on a text and possibly the answer to the generated question. They need to determine the type of interrogative word to be generated while having to pay attention to the grammar and vocabulary of the question. In this work, we propose Interrogative-Word-Aware Question Generation (IWAQG), a pipelined system composed of two modules: an interrogative word classifier and a QG model. The first module predicts the interrogative word that is provided to the second module to create the question. Owing to an increased recall of deciding the interrogative words to be used for the generated questions, the proposed model achieves new state-of-the-art results on the task of QG in SQuAD, improving from 46.58 to 47.69 in BLEU-1, 17.55 to 18.53 in BLEU-4, 21.24 to 22.33 in METEOR, and from 44.53 to 46.94 in ROUGE-L.

pdf bib
Extractive NarrativeQA with Heuristic Pre-Training
Lea Frermann

Although advances in neural architectures for NLP problems as well as unsupervised pre-training have led to substantial improvements on question answering and natural language inference, understanding of and reasoning over long texts still poses a substantial challenge. Here, we consider the task of question answering from full narratives (e.g., books or movie scripts), or their summaries, tackling the NarrativeQA challenge (NQA; Kocisky et al. (2018)). We introduce a heuristic extractive version of the data set, which allows us to approach the more feasible problem of answer extraction (rather than generation). We train systems for passage retrieval as well as answer span prediction using this data set. We use pre-trained BERT embeddings for injecting prior knowledge into our system. We show that our setup leads to state of the art performance on summary-level QA. On QA from full narratives, our model outperforms previous models on the METEOR metric. We analyze the relative contributions of pre-trained embeddings and the extractive training paradigm, and provide a detailed error analysis.

pdf bib
CLER: Cross-task Learning with Expert Representation to Generalize Reading and Understanding
Takumi Takahashi | Motoki Taniguchi | Tomoki Taniguchi | Tomoko Ohkuma

This paper describes our model for the reading comprehension task of the MRQA shared task. We propose CLER, which stands for Cross-task Learning with Expert Representation for the generalization of reading and understanding. To generalize its capabilities, the proposed model is composed of three key ideas: multi-task learning, mixture of experts, and ensemble. In-domain datasets are used to train and validate our model, and other out-of-domain datasets are used to validate the generalization of our model’s performances. In a submission run result, the proposed model achieved an average F1 score of 66.1 % in the out-of-domain setting, which is a 4.3 percentage point improvement over the official BERT baseline model.

pdf bib
Question Answering Using Hierarchical Attention on Top of BERT Features
Reham Osama | Nagwa El-Makky | Marwan Torki

The model submitted works as follows. When supplied a question and a passage it makes use of the BERT embedding along with the hierarchical attention model which consists of 2 parts, the co-attention and the self-attention, to locate a continuous span of the passage that is the answer to the question.

pdf bib
Domain-agnostic Question-Answering with Adversarial Training
Seanie Lee | Donggyu Kim | Jangwon Park

Adapting models to new domain without finetuning is a challenging problem in deep learning. In this paper, we utilize an adversarial training framework for domain generalization in Question Answering (QA) task. Our model consists of a conventional QA model and a discriminator. The training is performed in the adversarial manner, where the two models constantly compete, so that QA model can learn domain-invariant features. We apply this approach in MRQA Shared Task 2019 and show better performance compared to the baseline model.

pdf bib
Generalizing Question Answering System with Pre-trained Language Model Fine-tuning
Dan Su | Yan Xu | Genta Indra Winata | Peng Xu | Hyeondey Kim | Zihan Liu | Pascale Fung

With a large number of datasets being released and new techniques being proposed, Question answering (QA) systems have witnessed great breakthroughs in reading comprehension (RC)tasks. However, most existing methods focus on improving in-domain performance, leaving open the research question of how these mod-els and techniques can generalize to out-of-domain and unseen RC tasks. To enhance the generalization ability, we propose a multi-task learning framework that learns the shared representation across different tasks. Our model is built on top of a large pre-trained language model, such as XLNet, and then fine-tuned on multiple RC datasets. Experimental results show the effectiveness of our methods, with an average Exact Match score of 56.59 and an average F1 score of 68.98, which significantly improves the BERT-Large baseline by8.39 and 7.22, respectively

pdf bib
D-NET: A Pre-Training and Fine-Tuning Framework for Improving the Generalization of Machine Reading Comprehension
Hongyu Li | Xiyuan Zhang | Yibing Liu | Yiming Zhang | Quan Wang | Xiangyang Zhou | Jing Liu | Hua Wu | Haifeng Wang

In this paper, we introduce a simple system Baidu submitted for MRQA (Machine Reading for Question Answering) 2019 Shared Task that focused on generalization of machine reading comprehension (MRC) models. Our system is built on a framework of pretraining and fine-tuning, namely D-NET. The techniques of pre-trained language models and multi-task learning are explored to improve the generalization of MRC models and we conduct experiments to examine the effectiveness of these strategies. Our system is ranked at top 1 of all the participants in terms of averaged F1 score. Our codes and models will be released at PaddleNLP.

pdf bib
An Exploration of Data Augmentation and Sampling Techniques for Domain-Agnostic Question Answering
Shayne Longpre | Yi Lu | Zhucheng Tu | Chris DuBois

To produce a domain-agnostic question answering model for the Machine Reading Question Answering (MRQA) 2019 Shared Task, we investigate the relative benefits of large pre-trained language models, various data sampling strategies, as well as query and context paraphrases generated by back-translation. We find a simple negative sampling technique to be particularly effective, even though it is typically used for datasets that include unanswerable questions, such as SQuAD 2.0. When applied in conjunction with per-domain sampling, our XLNet (Yang et al., 2019)-based submission achieved the second best Exact Match and F1 in the MRQA leaderboard competition.