Barlas Oguz


2024

pdf bib
LLM-QAT: Data-Free Quantization Aware Training for Large Language Models
Zechun Liu | Barlas Oguz | Changsheng Zhao | Ernie Chang | Pierre Stock | Yashar Mehdad | Yangyang Shi | Raghuraman Krishnamoorthi | Vikas Chandra
Findings of the Association for Computational Linguistics: ACL 2024

Several post-training quantization methods have been applied to large language models (LLMs), and have been shown to perform well down to 8-bits. We find that these methods break down at lower bit precision, and investigate quantization-aware training for LLMs (LLM-QAT) to push quantization levels even further. We propose a data-free distillation method that leverages generations produced by the pre-trained model, which better preserves the original output distribution and allows quantizing any generative model independent of its training data, similar to post-training quantization methods. In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput and supporting long sequence dependencies at current model sizes. We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits. We observe large improvements over training-free methods, especially in the low-bit settings.

pdf bib
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts
Ganesh Jawahar | Haichuan Yang | Yunyang Xiong | Zechun Liu | Dilin Wang | Fei Sun | Meng Li | Aasish Pappu | Barlas Oguz | Muhammad Abdul-Mageed | Laks Lakshmanan | Raghuraman Krishnamoorthi | Vikas Chandra
Findings of the Association for Computational Linguistics: ACL 2024

Weight-sharing supernets are crucial for performance estimation in cutting-edge neural architecture search (NAS) frameworks. Despite their ability to generate diverse subnetworks without retraining, the quality of these subnetworks is not guaranteed due to weight sharing. In NLP tasks like machine translation and pre-trained language modeling, there is a significant performance gap between supernet and training from scratch for the same model architecture, necessitating retraining post optimal architecture identification.This study introduces a solution called mixture-of-supernets, a generalized supernet formulation leveraging mixture-of-experts (MoE) to enhance supernet model expressiveness with minimal training overhead. Unlike conventional supernets, this method employs an architecture-based routing mechanism, enabling indirect sharing of model weights among subnetworks. This customization of weights for specific architectures, learned through gradient descent, minimizes retraining time, significantly enhancing training efficiency in NLP. The proposed method attains state-of-the-art (SoTA) performance in NAS for fast machine translation models, exhibiting a superior latency-BLEU tradeoff compared to HAT, the SoTA NAS framework for machine translation. Furthermore, it excels in NAS for building memory-efficient task-agnostic BERT models, surpassing NAS-BERT and AutoDistil across various model sizes. The code can be found at: https://github.com/UBC-NLP/MoS.

pdf bib
Effective Long-Context Scaling of Foundation Models
Wenhan Xiong | Jingyu Liu | Igor Molybog | Hejia Zhang | Prajjwal Bhargava | Rui Hou | Louis Martin | Rashi Rungta | Karthik Abinav Sankararaman | Barlas Oguz | Madian Khabsa | Han Fang | Yashar Mehdad | Sharan Narang | Kshitiz Malik | Angela Fan | Shruti Bhosale | Sergey Edunov | Mike Lewis | Sinong Wang | Hao Ma
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present an effective recipe to train strong long-context LLMs that are capable of utilizing massive context windows of up to 32,000 tokens. Our models are built through continual pretraining from Llama 2 checkpoints with longer text sequences and on a dataset where long texts are upsampled. We perform extensive evaluation using language modeling, synthetic context probing tasks, and a wide range of downstream benchmarks. Across all evaluations, our models achieve consistent improvements on most regular-context tasks and significant improvements on long-context tasks over Llama 2. Moreover, with a cost-effective instruction tuning procedure that is free of expensive annotation, the presented models can already surpass gpt-3.5-turbo-16k‘s overall performance on long-context benchmarks. Alongside these results, we provide an in-depth analysis on each individual component of our method. We delve into Llama’s position encodings and discuss its key limitation in modeling long data. We examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths – ablation results suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

2023

pdf bib
Binary and Ternary Natural Language Generation
Zechun Liu | Barlas Oguz | Aasish Pappu | Yangyang Shi | Raghuraman Krishnamoorthi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Ternary and binary neural networks enable multiplication-free computation and promise multiple orders of magnitude efficiency gains over full-precision networks if implemented on specialized hardware. However, since both the parameter and the output space are highly discretized, such networks have proven very difficult to optimize. The difficulties are compounded for the class of transformer text generation models due to the sensitivity of the attention operation to quantization and the noise-compounding effects of autoregressive decoding in the high-cardinality output space. We approach the problem with a mix of statistics-based quantization for the weights and elastic quantization of the activations and demonstrate the first ternary and binary transformer models on the downstream tasks of summarization and machine translation. Our ternary BART base achieves an R1 score of 41 on the CNN/DailyMail benchmark, which is merely 3.9 points behind the full model while being 16x more efficient. Our binary model, while less accurate, achieves a highly non-trivial score of 35.6. For machine translation, we achieved BLEU scores of 21.7 and 17.6 on the WMT16 En-Ro benchmark, compared with a full precision mBART model score of 26.8. We also compare our approach in the 8-bit activation setting, where our ternary and even binary weight models can match or outperform the best existing 8-bit weight models in the literature. Our code and models are available at: https://github.com/facebookresearch/Ternary_Binary_Transformer.

pdf bib
CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector Retrieval
Minghan Li | Sheng-Chieh Lin | Barlas Oguz | Asish Ghoshal | Jimmy Lin | Yashar Mehdad | Wen-tau Yih | Xilun Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-vector retrieval methods combine the merits of sparse (e.g. BM25) and dense (e.g. DPR) retrievers and have achieved state-of-the-art performance on various retrieval tasks. These methods, however, are orders of magnitude slower and need much more space to store their indices compared to their single-vector counterparts. In this paper, we unify different multi-vector retrieval models from a token routing viewpoint and propose conditional token interaction via dynamic lexical routing, namely CITADEL, for efficient and effective multi-vector retrieval.CITADEL learns to route different token vectors to the predicted lexical keys such that a query token vector only interacts with document token vectors routed to the same key. This design significantly reduces the computation cost while maintaining high accuracy. Notably, CITADEL achieves the same or slightly better performance than the previous state of the art, ColBERT-v2, on both in-domain (MS MARCO) and out-of-domain (BEIR) evaluations, while being nearly 40 times faster. Source code and data are available at https://github.com/facebookresearch/dpr-scale/tree/citadel.

pdf bib
A Study on the Efficiency and Generalization of Light Hybrid Retrievers
Man Luo | Shashank Jain | Anchit Gupta | Arash Einolghozati | Barlas Oguz | Debojeet Chatterjee | Xilun Chen | Chitta Baral | Peyman Heidari
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Hybrid retrievers can take advantage of both sparse and dense retrievers. Previous hybrid retrievers leverage indexing-heavy dense retrievers. In this work, we study “Is it possible to reduce the indexing memory of hybrid retrievers without sacrificing performance”? Driven by this question, we leverage an indexing-efficient dense retriever (i.e. DrBoost) and introduce a LITE retriever that further reduces the memory of DrBoost. LITE is jointly trained on contrastive learning and knowledge distillation from DrBoost. Then, we integrate BM25, a sparse retriever, with either LITE or DrBoost to form light hybrid retrievers. Our Hybrid-LITE retriever saves 13× memory while maintaining 98.0% performance of the hybrid retriever of BM25 and DPR. In addition, we study the generalization capacity of our light hybrid retrievers on out-of-domain dataset and a set of adversarial attacks datasets. Experiments showcase that light hybrid retrievers achieve better generalization performance than individual sparse and dense retrievers. Nevertheless, our analysis shows that there is a large room to improve the robustness of retrievers, suggesting a new research direction.

pdf bib
Text-guided 3D Human Generation from 2D Collections
Tsu-Jui Fu | Wenhan Xiong | Yixin Nie | Jingyu Liu | Barlas Oguz | William Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

3D human modeling has been widely used for engaging interaction in gaming, film, and animation. The customization of these characters is crucial for creativity and scalability, which highlights the importance of controllability. In this work, we introduce Text-guided 3D Human Generation (T3H), where a model is to generate a 3D human, guided by the fashion description. There are two goals: 1) the 3D human should render articulately, and 2) its outfit is controlled by the given text. To address this T3H task, we propose Compositional Cross-modal Human (CCH). CCH adopts cross-modal attention to fuse compositional human rendering with the extracted fashion semantics. Each human body part perceives relevant textual guidance as its visual patterns. We incorporate the human prior and semantic discrimination to enhance 3D geometry transformation and fine-grained consistency, enabling it to learn from 2D collections for data efficiency. We conduct evaluations on DeepFashion and SHHQ with diverse fashion attributes covering the shape, fabric, and color of upper and lower clothing. Extensive experiments demonstrate that CCH achieves superior results for T3H with high efficiency.

pdf bib
How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval
Sheng-Chieh Lin | Akari Asai | Minghan Li | Barlas Oguz | Jimmy Lin | Yashar Mehdad | Wen-tau Yih | Xilun Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Various techniques have been developed in recent years to improve dense retrieval (DR), such as unsupervised contrastive learning and pseudo-query generation. Existing DRs, however, often suffer from effectiveness tradeoffs between supervised and zero-shot retrieval, which some argue was due to the limited model capacity. We contradict this hypothesis and show that a generalizable DR can be trained to achieve high accuracy in both supervised and zero-shot retrieval without increasing model size. In particular, we systematically examine the contrastive learning of DRs, under the framework of Data Augmentation (DA). Our study shows that common DA practices such as query augmentation with generative models and pseudo-relevance label creation using a cross-encoder, are often inefficient and sub-optimal. We hence propose a new DA approach with diverse queries and sources of supervision to progressively train a generalizable DR. As a result, DRAGON, our Dense Retriever trained with diverse AuGmentatiON, is the first BERT-base-sized DR to achieve state-of-the-art effectiveness in both supervised and zero-shot evaluations and even competes with models using more complex late interaction.

2022

pdf bib
Simple Local Attentions Remain Competitive for Long-Context Tasks
Wenhan Xiong | Barlas Oguz | Anchit Gupta | Xilun Chen | Diana Liskovich | Omer Levy | Scott Yih | Yashar Mehdad
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Many NLP tasks require processing long contexts beyond the length limit of pretrained models. In order to scale these models to longer text sequences, many efficient long-range attention variants have been proposed. Despite the abundance of research along this direction, it is still difficult to gauge the relative effectiveness of these models in practical use cases, e.g., if we apply these models following the pretrain-and-finetune paradigm. In this work, we aim to conduct a thorough analysis of these emerging models with large-scale and controlled experiments. For each attention variant, we pretrain large-size models using the same long-doc corpus and then finetune these models for real-world long-context tasks. Our findings reveal pitfalls of an existing widely-used long-range benchmark and show none of the tested efficient attentions can beat a simple local window attention under standard pretraining paradigms. Further analysis on local attention variants suggests that even the commonly used attention-window overlap is not necessary to achieve good downstream results — using disjoint local attentions, we are able to build a simpler and more efficient long-doc QA model that matches the performance of Longformer with half of its pretraining compute.

pdf bib
Boosted Dense Retriever
Patrick Lewis | Barlas Oguz | Wenhan Xiong | Fabio Petroni | Scott Yih | Sebastian Riedel
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose DrBoost, a dense retrieval ensemble inspired by boosting. DrBoost is trained in stages: each component model is learned sequentially and specialized by focusing only on retrieval mistakes made by the current ensemble. The final representation is the concatenation of the output vectors of all the component models, making it a drop-in replacement for standard dense retrievers at test time. DrBoost enjoys several advantages compared to standard dense retrieval models. It produces representations which are 4x more compact, while delivering comparable retrieval results. It also performs surprisingly well under approximate search with coarse quantization, reducing latency and bandwidth needs by another 4x. In practice, this can make the difference between serving indices from disk versus from memory, paving the way for much cheaper deployments.

pdf bib
Domain-matched Pre-training Tasks for Dense Retrieval
Barlas Oguz | Kushal Lakhotia | Anchit Gupta | Patrick Lewis | Vladimir Karpukhin | Aleksandra Piktus | Xilun Chen | Sebastian Riedel | Scott Yih | Sonal Gupta | Yashar Mehdad
Findings of the Association for Computational Linguistics: NAACL 2022

Pre-training on larger datasets with ever increasing model size isnow a proven recipe for increased performance across almost all NLP tasks.A notable exception is information retrieval, where additional pre-traininghas so far failed to produce convincing results. We show that, with theright pre-training setup, this barrier can be overcome. We demonstrate thisby pre-training large bi-encoder models on 1) a recently released set of 65 millionsynthetically generated questions, and 2) 200 million post-comment pairs from a preexisting dataset of Reddit conversations made available by pushshift.io. We evaluate on a set of information retrieval and dialogue retrieval benchmarks, showing substantial improvements over supervised baselines.

pdf bib
UniK-QA: Unified Representations of Structured and Unstructured Knowledge for Open-Domain Question Answering
Barlas Oguz | Xilun Chen | Vladimir Karpukhin | Stan Peshterliev | Dmytro Okhonko | Michael Schlichtkrull | Sonal Gupta | Yashar Mehdad | Scott Yih
Findings of the Association for Computational Linguistics: NAACL 2022

We study open-domain question answering with structured, unstructured and semi-structured knowledge sources, including text, tables, lists and knowledge bases. Departing from prior work, we propose a unifying approach that homogenizes all sources by reducing them to text and applies the retriever-reader model which has so far been limited to text sources only. Our approach greatly improves the results on knowledge-base QA tasks by 11 points, compared to latest graph-based methods. More importantly, we demonstrate that our unified knowledge (UniK-QA) model is a simple and yet effective way to combine heterogeneous sources of knowledge, advancing the state-of-the-art results on two popular question answering benchmarks, NaturalQuestions and WebQuestions, by 3.5 and 2.6 points, respectively. The code of UniK-QA is available at: https://github.com/facebookresearch/UniK-QA.

pdf bib
CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training
Patrick Huber | Armen Aghajanyan | Barlas Oguz | Dmytro Okhonko | Scott Yih | Sonal Gupta | Xilun Chen
Findings of the Association for Computational Linguistics: NAACL 2022

We propose a novel open-domain question-answering dataset based on the Common Crawl project. With a previously unseen number of around 130 million multilingual question-answer pairs (including about 60 million English data-points), we use our large-scale, natural, diverse and high-quality corpus to in-domain pre-train popular language models for the task of question-answering. In our experiments, we find that our Common Crawl Question Answering dataset (CCQA) achieves promising results in zero-shot, low resource and fine-tuned settings across multiple tasks, models and benchmarks.

pdf bib
Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?
Xilun Chen | Kushal Lakhotia | Barlas Oguz | Anchit Gupta | Patrick Lewis | Stan Peshterliev | Yashar Mehdad | Sonal Gupta | Wen-tau Yih
Findings of the Association for Computational Linguistics: EMNLP 2022

Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data. It has been argued that this is an inherent limitation of dense models. We rebut this claim by introducing the Salient Phrase Aware Retriever (SPAR), a dense retriever with the lexical matching capacity of a sparse model. We show that a dense Lexical Model Λ can be trained to imitate a sparse one, and SPAR is built by augmenting a standard dense retriever with Λ. Empirically, SPAR shows superior performance on a range of tasks including five question answering datasets, MS MARCO passage retrieval, as well as the EntityQuestions and BEIR benchmarks for out-of-domain evaluation, exceeding the performance of state-of-the-art dense and sparse retrievers. The code and models of SPAR are available at: https://github.com/facebookresearch/dpr-scale/tree/main/spar

pdf bib
Bridging the Training-Inference Gap for Dense Phrase Retrieval
Gyuwan Kim | Jinhyuk Lee | Barlas Oguz | Wenhan Xiong | Yizhe Zhang | Yashar Mehdad | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2022

Building dense retrievers requires a series of standard procedures, including training and validating neural models and creating indexes for efficient search. However, these procedures are often misaligned in that training objectives do not exactly reflect the retrieval scenario at inference time. In this paper, we explore how the gap between training and inference in dense retrieval can be reduced, focusing on dense phrase retrieval (Lee et al., 2021) where billions of representations are indexed at inference. Since validating every dense retriever with a large-scale index is practically infeasible, we propose an efficient way of validating dense retrievers using a small subset of the entire corpus. This allows us to validate various training strategies including unifying contrastive loss terms and using hard negatives for phrase retrieval, which largely reduces the training-inference discrepancy. As a result, we improve top-1 phrase retrieval accuracy by 2 3 points and top-20 passage retrieval accuracy by 2 4 points for open-domain question answering. Our work urges modeling dense retrievers with careful consideration of training and inference via efficient validation while advancing phrase retrieval as a general solution for dense retrieval.

2021

pdf bib
Multi-Task Retrieval for Knowledge-Intensive Tasks
Jean Maillard | Vladimir Karpukhin | Fabio Petroni | Wen-tau Yih | Barlas Oguz | Veselin Stoyanov | Gargi Ghosh
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be _universal_ and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks.

pdf bib
Joint Verification and Reranking for Open Fact Checking Over Tables
Michael Sejr Schlichtkrull | Vladimir Karpukhin | Barlas Oguz | Mike Lewis | Wen-tau Yih | Sebastian Riedel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Structured information is an important knowledge source for automatic verification of factual claims. Nevertheless, the majority of existing research into this task has focused on textual data, and the few recent inquiries into structured data have been for the closed-domain setting where appropriate evidence for each claim is assumed to have already been retrieved. In this paper, we investigate verification over structured data in the open-domain setting, introducing a joint reranking-and-verification model which fuses evidence documents in the verification component. Our open-domain model achieves performance comparable to the closed-domain state-of-the-art on the TabFact dataset, and demonstrates performance gains from the inclusion of multiple tables as well as a significant improvement over a heuristic retrieval baseline.

2020

pdf bib
MLQA: Evaluating Cross-lingual Extractive Question Answering
Patrick Lewis | Barlas Oguz | Ruty Rinott | Sebastian Riedel | Holger Schwenk
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making building QA systems that work well in other languages challenging. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA has over 12K instances in English and 5K in each other language, with each instance parallel between 4 languages on average. We evaluate state-of-the-art cross-lingual models and machine-translation-based baselines on MLQA. In all cases, transfer results are shown to be significantly behind training-language performance.

pdf bib
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin | Barlas Oguz | Sewon Min | Patrick Lewis | Ledell Wu | Sergey Edunov | Danqi Chen | Wen-tau Yih
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.

2018

pdf bib
Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document Classification
Katherine Yu | Haoran Li | Barlas Oguz
Proceedings of the Third Workshop on Representation Learning for NLP

In this paper we continue experiments where neural machine translation training is used to produce joint cross-lingual fixed-dimensional sentence embeddings. In this framework we introduce a simple method of adding a loss to the learning objective which penalizes distance between representations of bilingually aligned sentences. We evaluate cross-lingual transfer using two approaches, cross-lingual similarity search on an aligned corpus (Europarl) and cross-lingual document classification on a recently published benchmark Reuters corpus, and we find the similarity loss significantly improves performance on both. Furthermore, we notice that while our Reuters results are very competitive, our English results are not as competitive, showing room for improvement in the current cross-lingual state-of-the-art. Our results are based on a set of 6 European languages.