Hui Liu


2024

pdf bib
Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
Yuping Lin | Pengfei He | Han Xu | Yue Xing | Makoto Yamada | Hui Liu | Jiliang Tang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM’s representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.

pdf bib
TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection
Hui Liu | Wenya Wang | Haoru Li | Haoliang Li
Findings of the Association for Computational Linguistics: ACL 2024

The proliferation of fake news has emerged as a severe societal problem, raising significant interest from industry and academia. While existing deep-learning based methods have made progress in detecting fake news accurately, their reliability may be compromised caused by the non-transparent reasoning processes, poor generalization abilities and inherent risks of integration with large language models (LLMs). To address this challenge, we propose TELLER, a novel framework for trustworthy fake news detection that prioritizes explainability, generalizability and controllability of models. This is achieved via a dual-system framework that integrates cognition and decision systems, adhering to the principles above. The cognition system harnesses human expertise to generate logical predicates, which guide LLMs in generating human-readable logic atoms. Meanwhile, the decision system deduces generalizable logic rules to aggregate these atoms, enabling the identification of the truthfulness of the input news across diverse domains and enhancing transparency in the decision-making process. Finally, we present comprehensive evaluation results on four datasets, demonstrating the feasibility and trustworthiness of our proposed framework.

pdf bib
Are Large Language Models (LLMs) Good Social Predictors?
Kaiqi Yang | Hang Li | Hongzhi Wen | Tai-Quan Peng | Jiliang Tang | Hui Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

With the recent advancement of Large Language Models (LLMs), efforts have been made to leverage LLMs in crucial social science study methods, including predicting human features of social life such as presidential voting. Existing works suggest that LLMs are capable of generating human-like responses. Nevertheless, it is unclear how well LLMs work and where the plausible predictions derive from. This paper critically examines the performance of LLMs as social predictors, pointing out the source of correct predictions and limitations. Based on the notion of mutability that classifies social features, we design three realistic settings and a novel social prediction task, where the LLMs make predictions with input features of the same mutability and accessibility with the response feature. We find that the promising performance achieved by previous studies is because of input shortcut features to the response, which are hard to capture in reality; the performance degrades dramatically to near-random after removing the shortcuts. With the comprehensive investigations on various LLMs, we reveal that LLMs struggle to work as expected on social prediction when given ordinarily available input features without shortcuts. We further investigate possible reasons for this phenomenon and suggest potential ways to enhance LLMs for social prediction.

pdf bib
On the Generalization of Training-based ChatGPT Detection Methods
Han Xu | Jie Ren | Pengfei He | Shenglai Zeng | Yingqian Cui | Amy Liu | Hui Liu | Jiliang Tang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models, such as ChatGPT, achieve amazing performance on various language processing tasks. However, they can also be exploited for improper purposes such as plagiarism or misinformation dissemination. Thus, there is an urgent need to detect the texts generated by LLMs. One type of most studied methods trains classification models to distinguish LLM texts from human texts. However, existing studies demonstrate the trained models may suffer from distribution shifts (during test), i.e., they are ineffective to predict the generated texts from unseen language tasks or topics which are not collected during training. In this work, we focus on ChatGPT as a representative model, and we conduct a comprehensive investigation on these methods’ generalization behaviors under distribution shift caused by a wide range of factors, including prompts, text lengths, topics, and language tasks. To achieve this goal, we first collect a new dataset with human and ChatGPT texts, and then we conduct extensive studies on the collected dataset. Our studies unveil insightful findings that provide guidance for future methodologies and data collection strategies for LLM detection.

pdf bib
Reassess Summary Factual Inconsistency Detection with Large Language Model
Jiuding Yang | Hui Liu | Weidong Guo | Zhuwei Rao | Yu Xu | Di Niu
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

Ensuring factual consistency between the summary and the original document is paramount in summarization tasks. Consequently, considerable effort has been dedicated to detecting inconsistencies. With the advent of Large Language Models (LLMs), recent studies have begun to leverage their advanced language understanding capabilities for inconsistency detection. However, early attempts have shown that LLMs underperform traditional models due to their limited ability to follow instructions and the absence of an effective detection methodology. In this study, we reassess summary inconsistency detection with LLMs, comparing the performances of GPT-3.5 and GPT-4. To advance research in LLM-based inconsistency detection, we propose SIFiD (Summary Inconsistency Detection with Filtered Document) that identify key sentences within documents by either employing natural language inference or measuring semantic similarity between summaries and documents.

2023

pdf bib
Models See Hallucinations: Evaluating the Factuality in Video Captioning
Hui Liu | Xiaojun Wan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Video captioning aims to describe events in a video with natural language. In recent years, many works have focused on improving captioning models’ performance. However, like other text generation tasks, it risks introducing factual errors not supported by the input video. Factual errors can seriously affect the quality of the generated text, sometimes making it completely unusable. Although factual consistency has received much research attention in text-to-text tasks (e.g., summarization), it is less studied in vision-based text generation. In this work, we conduct the first human evaluation of the factuality in video captioning and annotate two factuality datasets. We find that 56% of the model-generated sentences have factual errors, indicating it is a severe problem in this field, but existing evaluation metrics show little correlation with human factuality annotation. We further propose a weakly-supervised, model-based factuality metric FactVC, which outperforms previous metrics on factuality evaluation of video captioning.

pdf bib
Interpretable Multimodal Misinformation Detection with Logic Reasoning
Hui Liu | Wenya Wang | Haoliang Li
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal misinformation on online social platforms is becoming a critical concern due to increasing credibility and easier dissemination brought by multimedia content, compared to traditional text-only information. While existing multimodal detection approaches have achieved high performance, the lack of interpretability hinders these systems’ reliability and practical deployment. Inspired by Neural-Symbolic AI which combines the learning ability of neural networks with the explainability of symbolic learning, we propose a novel logic-based neural model for multimodal misinformation detection which integrates interpretable logic clauses to express the reasoning process of the target task. To make learning effective, we parameterize the symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses. Additionally, to make our framework generalizable across diverse misinformation sources, we introduce five meta-predicates that can be instantiated with different correlations. Results on three public datasets (Twitter, Weibo, and Sarcasm) demonstrate the feasibility and versatility of our model.

pdf bib
Knowledge-Selective Pretraining for Attribute Value Extraction
Hui Liu | Qingyu Yin | Zhengyang Wang | Chenwei Zhang | Haoming Jiang | Yifan Gao | Zheng Li | Xian Li | Chao Zhang | Bing Yin | William Wang | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Attribute Value Extraction (AVE) aims to retrieve the values of attributes from the product profiles. The state-of-the-art methods tackle the AVE task through a question-answering (QA) paradigm, where the value is predicted from the context (i.e. product profile) given a query (i.e. attributes). Despite of the substantial advancements that have been made, the performance of existing methods on rare attributes is still far from satisfaction, and they cannot be easily extended to unseen attributes due to the poor generalization ability. In this work, we propose to leverage pretraining and transfer learning to address the aforementioned weaknesses. We first collect the product information from various E-commerce stores and retrieve a large number of (profile, attribute, value) triples, which will be used as the pretraining corpus. To more effectively utilize the retrieved corpus, we further design a Knowledge-Selective Framework (KSelF) based on query expansion that can be closely combined with the pretraining corpus to boost the performance. Meanwhile, considering the public AE-pub dataset contains considerable noise, we construct and contribute a larger benchmark EC-AVE collected from E-commerce websites. We conduct evaluation on both of these datasets. The experimental results demonstrate that our proposed KSelF achieves new state-of-the-art performance without pretraining. When incorporated with the pretraining corpus, the performance of KSelF can be further improved, particularly on the attributes with limited training resources.

2022

pdf bib
Toward Annotator Group Bias in Crowdsourcing
Haochen Liu | Joseph Thekinen | Sinem Mollaoglu | Da Tang | Ji Yang | Youlong Cheng | Hui Liu | Jiliang Tang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Crowdsourcing has emerged as a popular approach for collecting annotated data to train supervised machine learning models. However, annotator bias can lead to defective annotations. Though there are a few works investigating individual annotator bias, the group effects in annotators are largely overlooked. In this work, we reveal that annotators within the same demographic group tend to show consistent group bias in annotation tasks and thus we conduct an initial study on annotator group bias. We first empirically verify the existence of annotator group bias in various real-world crowdsourcing datasets. Then, we develop a novel probabilistic graphical framework GroupAnno to capture annotator group bias with an extended Expectation Maximization (EM) algorithm. We conduct experiments on both synthetic and real-world datasets. Experimental results demonstrate the effectiveness of our model in modeling annotator group bias in label aggregation and model learning over competitive baselines.

pdf bib
Towards Multi-Modal Sarcasm Detection via Hierarchical Congruity Modeling with Knowledge Enhancement
Hui Liu | Wenya Wang | Haoliang Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Sarcasm is a linguistic phenomenon indicating a discrepancy between literal meanings and implied intentions. Due to its sophisticated nature, it is usually difficult to be detected from the text itself. As a result, multi-modal sarcasm detection has received more and more attention in both academia and industries. However, most existing techniques only modeled the atomic-level inconsistencies between the text input and its accompanying image, ignoring more complex compositions for both modalities. Moreover, they neglected the rich information contained in external knowledge, e.g., image captions. In this paper, we propose a novel hierarchical framework for sarcasm detection by exploring both the atomic-level congruity based on multi-head cross attentions and the composition-level congruity based on graph neural networks, where a post with low congruity can be identified as sarcasm. In addition, we exploit the effect of various knowledge resources for sarcasm detection. Evaluation results on a public multi-modal sarcasm detection dataset based on Twitter demonstrate the superiority of our proposed model.

pdf bib
Contrastive Learning enhanced Author-Style Headline Generation
Hui Liu | Weidong Guo | Yige Chen | Xiangyang Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Headline generation is a task of generating an appropriate headline for a given article, which can be further used for machine-aided writing or enhancing the click-through ratio. Current works only use the article itself in the generation, but have not taken the writing style of headlines into consideration. In this paper, we propose a novel Seq2Seq model called CLH3G (Contrastive Learning enhanced Historical Headlines based Headline Generation) which can use the historical headlines of the articles that the author wrote in the past to improve the headline generation of current articles. By taking historical headlines into account, we can integrate the stylistic features of the author into our model, and generate a headline not only appropriate for the article, but also consistent with the author’s style. In order to efficiently learn the stylistic features of the author, we further introduce a contrastive learning based auxiliary task for the encoder of our model. Besides, we propose two methods to use the learned stylistic features to guide both the pointer and the decoder during the generation. Experimental results show that historical headlines of the same user can improve the headline generation significantly, and both the contrastive learning module and the two style features fusion methods can further boost the performance.

2021

pdf bib
Video Paragraph Captioning as a Text Summarization Task
Hui Liu | Xiaojun Wan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Video paragraph captioning aims to generate a set of coherent sentences to describe a video that contains several events. Most previous methods simplify this task by using ground-truth event segments. In this work, we propose a novel framework by taking this task as a text summarization task. We first generate lots of sentence-level captions focusing on different video clips and then summarize these captions to obtain the final paragraph caption. Our method does not depend on ground-truth event segments. Experiments on two popular datasets ActivityNet Captions and YouCookII demonstrate the advantages of our new framework. On the ActivityNet dataset, our method even outperforms some previous methods using ground-truth event segment labels.

pdf bib
Enhancing Descriptive Image Captioning with Natural Language Inference
Zhan Shi | Hui Liu | Xiaodan Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Generating descriptive sentences that convey non-trivial, detailed, and salient information about images is an important goal of image captioning. In this paper we propose a novel approach to encourage captioning models to produce more detailed captions using natural language inference, based on the motivation that, among different captions of an image, descriptive captions are more likely to entail less descriptive captions. Specifically, we construct directed inference graphs for reference captions based on natural language inference. A PageRank algorithm is then employed to estimate the descriptiveness score of each node. Built on that, we use reference sampling and weighted designated rewards to guide captioning to generate descriptive captions. The results on MSCOCO show that the proposed method outperforms the baselines significantly on a wide range of conventional and descriptiveness-related evaluation metrics.

pdf bib
Unsupervised Conversation Disentanglement through Co-Training
Hui Liu | Zhan Shi | Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversation disentanglement aims to separate intermingled messages into detached sessions, which is a fundamental task in understanding multi-party conversations. Existing work on conversation disentanglement relies heavily upon human-annotated datasets, which is expensive to obtain in practice. In this work, we explore training a conversation disentanglement model without referencing any human annotations. Our method is built upon the deep co-training algorithm, which consists of two neural networks: a message-pair classifier and a session classifier. The former is responsible of retrieving local relations between two messages while the latter categorizes a message to a session by capturing context-aware information. Both the two networks are initialized respectively with pseudo data built from the unannotated corpus. During the deep co-training process, we use the session classifier as a reinforcement learning component to learn a session assigning policy by maximizing the local rewards given by the message-pair classifier. For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence from the disentangled sessions predicted by the session classifier. Experimental results on the large Movie Dialogue Dataset demonstrate that our proposed approach achieves competitive performance compared to previous supervised methods. Further experiments show that the predicted disentangled conversations can promote the performance on the downstream task of multi-party response selection.

pdf bib
A Semantic Filter Based on Relations for Knowledge Graph Completion
Zongwei Liang | Junan Yang | Hui Liu | Keju Huang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graph embedding, representing entities and relations in the knowledge graphs with high-dimensional vectors, has made significant progress in link prediction. More researchers have explored the representational capabilities of models in recent years. That is, they investigate better representational models to fit symmetry/antisymmetry and combination relationships. The current embedding models are more inclined to utilize the identical vector for the same entity in various triples to measure the matching performance. The observation that measuring the rationality of specific triples means comparing the matching degree of the specific attributes associated with the relations is well-known. Inspired by this fact, this paper designs Semantic Filter Based on Relations(SFBR) to extract the required attributes of the entities. Then the rationality of triples is compared under these extracted attributes through the traditional embedding models. The semantic filter module can be added to most geometric and tensor decomposition models with minimal additional memory. experiments on the benchmark datasets show that the semantic filter based on relations can suppress the impact of other attribute dimensions and improve link prediction performance. The tensor decomposition models with SFBR have achieved state-of-the-art.

pdf bib
Retrieval, Analogy, and Composition: A framework for Compositional Generalization in Image Captioning
Zhan Shi | Hui Liu | Martin Renqiang Min | Christopher Malon | Li Erran Li | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.

pdf bib
Improving Pretrained Models for Zero-shot Multi-label Text Classification through Reinforced Label Hierarchy Reasoning
Hui Liu | Danqing Zhang | Bing Yin | Xiaodan Zhu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate label hierarchies to obtain effective label representations (Rios and Kavuluru, 2018). More recently, pretrained models like BERT (Devlin et al., 2018) have been used to convert classification tasks into a textual entailment task (Yin et al., 2019). This approach is naturally suitable for the ZS-MTC task. However, pretrained models are underexplored in the existing work because they do not generate individual vector representations for text or labels, making it unintuitive to combine them with conventional graph encoding methods. In this paper, we explore to improve pretrained models with label hierarchies on the ZS-MTC task. We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training. Meanwhile, to overcome the weakness of flat predictions, we design a rollback algorithm that can remove logical errors from predictions during inference. Experimental results on three real-life datasets show that our approach achieves better performance and outperforms previous non-pretrained methods on the ZS-MTC task.

2020

pdf bib
Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation
Bei Li | Hui Liu | Ziyang Wang | Yufan Jiang | Tong Xiao | Jingbo Zhu | Tongran Liu | Changliang Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in document-level neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.

pdf bib
Jointly Learning to Align and Summarize for Neural Cross-Lingual Summarization
Yue Cao | Hui Liu | Xiaojun Wan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Cross-lingual summarization is the task of generating a summary in one language given a text in a different language. Previous works on cross-lingual summarization mainly focus on using pipeline methods or training an end-to-end model using the translated parallel data. However, it is a big challenge for the model to directly learn cross-lingual summarization as it requires learning to understand different languages and learning how to summarize at the same time. In this paper, we propose to ease the cross-lingual summarization training by jointly learning to align and summarize. We design relevant loss functions to train this framework and propose several methods to enhance the isomorphism and cross-lingual transfer between languages. Experimental results show that our model can outperform competitive models in most cases. In addition, we show that our model even has the ability to generate cross-lingual summaries without access to any cross-lingual corpus.

pdf bib
Does Gender Matter? Towards Fairness in Dialogue Systems
Haochen Liu | Jamell Dacon | Wenqi Fan | Hui Liu | Zitao Liu | Jiliang Tang
Proceedings of the 28th International Conference on Computational Linguistics

Recently there are increasing concerns about the fairness of Artificial Intelligence (AI) in real-world applications such as computer vision and recommendations. For example, recognition algorithms in computer vision are unfair to black people such as poorly detecting their faces and inappropriately identifying them as “gorillas”. As one crucial application of AI, dialogue systems have been extensively applied in our society. They are usually built with real human conversational data; thus they could inherit some fairness issues which are held in the real world. However, the fairness of dialogue systems has not been well investigated. In this paper, we perform a pioneering study about the fairness issues in dialogue systems. In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models. Our studies demonstrate that popular dialogue models show significant prejudice towards different genders and races. Besides, to mitigate the bias in dialogue systems, we propose two simple but effective debiasing methods. Experiments show that our methods can reduce the bias in dialogue systems significantly. The dataset and the implementation are released to foster fairness research in dialogue systems.

pdf bib
Mitigating Gender Bias for Neural Dialogue Generation with Adversarial Learning
Haochen Liu | Wentao Wang | Yiqi Wang | Hui Liu | Zitao Liu | Jiliang Tang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect people’s gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality.

pdf bib
Shallow-to-Deep Training for Neural Machine Translation
Bei Li | Ziyang Wang | Hui Liu | Yufan Jiang | Quan Du | Tong Xiao | Huizhen Wang | Jingbo Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT’16 English-German and WMT’14 English-French translation tasks show that it is 1:4 faster than training from scratch, and achieves a BLEU score of 30:33 and 43:29 on two tasks. The code is publicly available at https://github.com/libeineu/SDT-Training.

pdf bib
The NiuTrans System for the WMT20 Quality Estimation Shared Task
Chi Hu | Hui Liu | Kai Feng | Chen Xu | Nuo Xu | Zefan Zhou | Shiqin Yan | Yingfeng Luo | Chenglong Wang | Xia Meng | Tong Xiao | Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation

This paper describes the submissions of the NiuTrans Team to the WMT 2020 Quality Estimation Shared Task. We participated in all tasks and all language pairs. We explored the combination of transfer learning, multi-task learning and model ensemble. Results on multiple tasks show that deep transformer machine translation models and multilingual pretraining methods significantly improve translation quality estimation performance. Our system achieved remarkable results in multiple level tasks, e.g., our submissions obtained the best results on all tracks in the sentence-level Direct Assessment task.

2019

pdf bib
INS: An Interactive Chinese News Synthesis System
Hui Liu | Wentao Qin | Xiaojun Wan
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Nowadays, we are surrounded by more and more online news articles. Tens or hundreds of news articles need to be read if we wish to explore a hot news event or topic. So it is of vital importance to automatically synthesize a batch of news articles related to the event or topic into a new synthesis article (or overview article) for reader’s convenience. It is so challenging to make news synthesis fully automatic that there is no successful solution by now. In this paper, we put forward a novel Interactive News Synthesis system (i.e. INS), which can help generate news overview articles automatically or by interacting with users. More importantly, INS can serve as a tool for editors to help them finish their jobs. In our experiments, INS performs well on both topic representation and synthesis article generation. A user study also demonstrates the usefulness and users’ satisfaction with the INS tool. A demo video is available at https://youtu.be/7ItteKW3GEk.

pdf bib
Towards Explainable NLP: A Generative Explanation Framework for Text Classification
Hui Liu | Qingyu Yin | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Building explainable systems is a critical problem in the field of Natural Language Processing (NLP), since most machine learning models provide no explanations for the predictions. Existing approaches for explainable machine learning systems tend to focus on interpreting the outputs or the connections between inputs and outputs. However, the fine-grained information (e.g. textual explanations for the labels) is often ignored, and the systems do not explicitly generate the human-readable explanations. To solve this problem, we propose a novel generative explanation framework that learns to make classification decisions and generate fine-grained explanations at the same time. More specifically, we introduce the explainable factor and the minimum risk training approach that learn to generate more reasonable explanations. We construct two new datasets that contain summaries, rating scores, and fine-grained reasons. We conduct experiments on both datasets, comparing with several strong neural network baseline systems. Experimental results show that our method surpasses all baselines on both datasets, and is able to generate concise explanations at the same time.

pdf bib
The NiuTrans Machine Translation Systems for WMT19
Bei Li | Yinqiao Li | Chen Xu | Ye Lin | Jiqiang Liu | Hui Liu | Ziyang Wang | Yuhao Zhang | Nuo Xu | Zeyang Wang | Kai Feng | Hexuan Chen | Tengbo Liu | Yanyang Li | Qiang Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.

2007

pdf bib
Semantic Labeling of Compound Nominalization in Chinese
Jinglei Zhao | Hui Liu | Ruzhan Lu
Proceedings of the Workshop on A Broader Perspective on Multiword Expressions

2006

pdf bib
A Weakly Supervised Learning Approach for Spoken Language Understanding
Wei-Lin Wu | Ru-Zhan Lu | Jian-Yong Duan | Hui Liu | Feng Gao | Yu-Quan Chen
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing

2004

pdf bib
An Enhanced Model for Chinese Word Segmentation and Part-of-Speech Tagging
Feng Jiang | Hui Liu | Yuquan Chen | Ruzhan Lu
Proceedings of the Third SIGHAN Workshop on Chinese Language Processing