Marco Di Giovanni

Also published as: Marco Di Giovanni


2023

pdf bib
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

2022

pdf bib
DataScience-Polimi at SemEval-2022 Task 8: Stacking Language Models to Predict News Article Similarity
Marco Di Giovanni | Thomas Tasca | Marco Brambilla
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we describe the approach we designed to solve SemEval-2022 Task 8: Multilingual News Article Similarity. We collect and use exclusively textual features (title, description and body) of articles. Our best model is a stacking of 14 Transformer-based Language models fine-tuned on single or multiple fields, using data in the original language or translated to English. It placed fourth on the original leaderboard, sixth on the complete official one and fourth on the English-subset official one. We observe the data collection as our principal source of error due to a relevant fraction of missing or wrong fields.

2021

pdf bib
Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings
Marco Di Giovanni | Marco Brambilla
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter’s intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities. Code available at https://github.com/marco-digio/Twitter4SSE

pdf bib
Content-based Stance Classification of Tweets about the 2020 Italian Constitutional Referendum
Marco Di Giovanni | Marco Brambilla
Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media

On September 2020 a constitutional referendum was held in Italy. In this work we collect a dataset of 1.2M tweets related to this event, with particular interest to the textual content shared, and we design a hashtag-based semi-automatic approach to label them as Supporters or Against the referendum. We use the labelled dataset to train a classifier based on transformers, unsupervisedly pre-trained on Italian corpora. Our model generalizes well on tweets that cannot be labeled by the hashtag-based approach. We check that no length-, lexicon- and sentiment-biases are present to affect the performance of the classifier. Finally, we discuss the discrepancy between the magnitudes of tweets expressing a specific stance, obtained using both the hashtag-based approach and our trained classifier, and the real outcome of the referendum: the referendum was approved by 70% of the voters, while the number of tweets against the referendum is four times greater than the number of tweets supporting it. We conclude that the Italian referendum was an example of event where the minority was very loud on social media, highly influencing the perception of the event. Analyzing only the activity on social media is dangerous and can lead to extremely wrong forecasts.
Search
Co-authors
Fix data