In this paper, we introduce Neural Information Retrieval resources for 11 widely spoken Indian Languages (Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu) from two major Indian language families (Indo-Aryan and Dravidian). These resources include (a) INDIC-MARCO, a multilingual version of the MS MARCO dataset in 11 Indian Languages created using Machine Translation, and (b) Indic-ColBERT, a collection of 11 distinct Monolingual Neural Information Retrieval models, each trained on one of the 11 languages in the INDIC-MARCO dataset. To the best of our knowledge, IndicIRSuite is the first attempt at building large-scale Neural Information Retrieval resources for a large number of Indian languages, and we hope that it will help accelerate research in Neural IR for Indian Languages. Experiments demonstrate that Indic-ColBERT achieves 47.47% improvement in the MRR@10 score averaged over the INDIC-MARCO baselines for all 11 Indian languages except Oriya, 12.26% improvement in the NDCG@10 score averaged over the MIRACL Bengali and Hindi Language baselines, and 20% improvement in the MRR@100 Score over the Mr. Tydi Bengali Language baseline.
Well-formed context aware image captions and tags in enterprise content such as marketing material are critical to ensure their brand presence and content recall. Manual creation and updates to ensure the same is non trivial given the scale and the tedium towards this task. We propose a new unified Vision-Language (VL) model based on the One For All (OFA) model, with a focus on context-assisted image captioning where the caption is generated based on both the image and its context. Our approach aims to overcome the context-independent (image and text are treated independently) nature of the existing approaches. We exploit context by pretraining our model with datasets of three tasks- news image captioning where the news article is the context, contextual visual entailment, and keyword extraction from the context. The second pretraining task is a new VL task, and we construct and release two datasets for the task with 1.1M and 2.2K data instances. Our system achieves state-of-the-art results with an improvement of up to 8.34 CIDEr score on the benchmark news image captioning datasets. To the best of our knowledge, ours is the first effort at incorporating contextual information in pretraining the models for the VL tasks.
We consider the problem of segmenting unformatted text and transcripts linearly based on their topical structure. While prior approaches explicitly train to predict segment boundaries, our proposed approach solves this task by inferring the hierarchical segmentation structure associated with the input text fragment. Given the lack of a large annotated dataset for this task, we propose a data curation strategy and create a corpus of over 700K Wikipedia articles with their hierarchical structures. We then propose the first supervised approach to generating hierarchical segmentation structures based on these annotations. Our method, in particular, is based on a neural conditional random field (CRF), which explicitly models the statistical dependency between a node and its constituent child nodes. We introduce a new data augmentation scheme as part of our model training strategy, which involves sampling a variety of node aggregations, permutations, and removals, all of which help capture fine-grained and coarse topical shifts in the data and improve model performance. Extensive experiments show that our model outperforms or achieves competitive performance when compared to previous state-of-the-art algorithms in the following settings: rich-resource, cross-domain transferability, few-shot supervision, and segmentation when topic label annotations are provided.
Question generation methods based on pre-trained language models often suffer from factual inconsistencies and incorrect entities and are not answerable from the input paragraph. Domain shift – where the test data is from a different domain than the training data - further exacerbates the problem of hallucination. This is a critical issue for any natural language application doing question generation. In this work, we propose an effective data processing technique based on de-lexicalization for consistent question generation across domains. Unlike existing approaches for remedying hallucination, the proposed approach does not filter training data and is generic across question-generation models. Experimental results across six benchmark datasets show that our model is robust to domain shift and produces entity-level factually consistent questions without significant impact on traditional metrics.
In contexts where debate and deliberation are the norm, the participants are regularly presented with new information that conflicts with their original beliefs. When required to update their beliefs (belief alignment), they may choose arguments that align with their worldview (confirmation bias). We test this and competing hypotheses in a constraint-based modeling approach to predict the winning arguments in multi-party interactions in the Reddit Change My View and Intelligence Squared debates datasets. We adopt a hierarchical generative Variational Autoencoder as our model and impose structural constraints that reflect competing hypotheses about the nature of argumentation. Our findings suggest that in most settings, predictive models that anticipate winning arguments to be further from the initial argument of the opinion holder are more likely to succeed.
Content is created for a well-defined purpose, often described by a metric or signal represented in the form of structured information. The relationship between the goal (metrics) of target content and the content itself is non-trivial. While large-scale language models show promising text generation capabilities, guiding the generated text with external metrics is challenging. These metrics and content tend to have inherent relationships and not all of them may be of consequence. We introduce CaM-Gen: Causally aware Generative Networks guided by user-defined target metrics incorporating the causal relationships between the metric and content features. We leverage causal inference techniques to identify causally significant aspects of a text that lead to the target metric and then explicitly guide generative models towards these by a feedback mechanism. We propose this mechanism for variational autoencoder and Transformer-based generative models. The proposed models beat baselines in terms of the target metric control while maintaining fluency and language quality of the generated text. To the best of our knowledge, this is one of the early attempts at controlled generation incorporating a metric guide using causal inference.
The number of depression and suicide risk cases on social media platforms is ever-increasing, and the lack of depression detection mechanisms on these platforms is becoming increasingly apparent. A majority of work in this area has focused on leveraging linguistic features while dealing with small-scale datasets. However, one faces many obstacles when factoring into account the vastness and inherent imbalance of social media content. In this paper, we aim to optimize the performance of user-level depression classification to lessen the burden on computational resources. The resulting system executes in a quicker, more efficient manner, in turn making it suitable for deployment. To simulate a platform agnostic framework, we simultaneously replicate the size and composition of social media to identify victims of depression. We systematically design a solution that categorizes post embeddings, obtained by fine-tuning transformer models such as RoBERTa, and derives user-level representations using hierarchical attention networks. We also introduce a novel mental health dataset to enhance the performance of depression categorization. We leverage accounts of depression taken from this dataset to infuse domain-specific elements into our framework. Our proposed methods outperform numerous baselines across standard metrics for the task of depression detection in text.
Legal documents such as contracts contain complex and domain-specific jargons, long and nested sentences, and often present with several details that may be difficult to understand for laypeople without domain expertise. In this paper, we explore the problem of text simplification (TS) in legal domain. The main challenge to this is the lack of availability of complex-simple parallel datasets for the legal domain. We investigate some of the existing datasets, methods, and metrics in the TS literature for simplifying legal texts, and perform human evaluation to analyze the gaps. We present some of the challenges involved, and outline a few open questions that need to be addressed for future research in this direction.
Disentanglement of latent representations into content and style spaces has been a commonly employed method for unsupervised text style transfer. These techniques aim to learn the disentangled representations and tweak them to modify the style of a sentence. In this paper, we propose a counterfactual-based method to modify the latent representation, by posing a ‘what-if’ scenario. This simple and disciplined approach also enables a fine-grained control on the transfer strength. We conduct experiments with the proposed methodology on multiple attribute transfer tasks like Sentiment, Formality and Excitement to support our hypothesis.
This study introduces and analyzes WikiTalkEdit, a dataset of conversations and edit histories from Wikipedia, for research in online cooperation and conversation modeling. The dataset comprises dialog triplets from the Wikipedia Talk pages, and editing actions on the corresponding articles being discussed. We show how the data supports the classic understanding of style matching, where positive emotion and the use of first-person pronouns predict a positive emotional change in a Wikipedia contributor. However, they do not predict editorial behavior. On the other hand, feedback invoking evidentiality and criticism, and references to Wikipedia’s community norms, is more likely to persuade the contributor to perform edits but is less likely to lead to a positive emotion. We developed baseline classifiers trained on pre-trained RoBERTa features that can predict editorial change with an F1 score of .54, as compared to an F1 score of .66 for predicting emotional change. A diagnostic analysis of persisting errors is also provided. We conclude with possible applications and recommendations for future work. The dataset is publicly available for the research community at https://github.com/kj2013/WikiTalkEdit/.
Affect preferences vary with user demographics, and tapping into demographic information provides important cues about the users’ language preferences. In this paper, we utilize the user demographics and propose EmpathBERT, a demographic-aware framework for empathy prediction based on BERT. Through several comparative experiments, we show that EmpathBERT surpasses traditional machine learning and deep learning models, and illustrate the importance of user demographics, for predicting empathy and distress in user responses to stimulative news articles. We also highlight the importance of affect information in the responses by developing affect-aware models to predict user demographic attributes.
Recent efforts to develop deep learning models for text generation tasks such as extractive and abstractive summarization have resulted in state-of-the-art performances on various datasets. However, obtaining the best model configuration for a given dataset requires an extensive knowledge of deep learning specifics like model architecture, tuning parameters etc., and is often extremely challenging for a non-expert. In this paper, we propose methods to automatically create deep learning models for the tasks of extractive and abstractive text summarization. Based on the recent advances in Automated Machine Learning and the success of large language models such as BERT and GPT-2 in encoding knowledge, we use a combination of Neural Architecture Search (NAS) and Knowledge Distillation (KD) techniques to perform model search and compression using the vast knowledge provided by these language models to develop smaller, customized models for any given dataset. We present extensive empirical results to illustrate the effectiveness of our model creation methods in terms of inference time and model size, while achieving near state-of-the-art performances in terms of accuracy across a range of datasets.
Sexism, a form of oppression based on one’s sex, manifests itself in numerous ways and causes enormous suffering. In view of the growing number of experiences of sexism reported online, categorizing these recollections automatically can assist the fight against sexism, as it can facilitate effective analyses by gender studies researchers and government officials involved in policy making. In this paper, we investigate the fine-grained, multi-label classification of accounts (reports) of sexism. To the best of our knowledge, we work with considerably more categories of sexism than any published work through our 23-class problem formulation. Moreover, we propose a multi-task approach for fine-grained multi-label sexism classification that leverages several supporting tasks without incurring any manual labeling cost. Unlabeled accounts of sexism are utilized through unsupervised learning to help construct our multi-task setup. We also devise objective functions that exploit label correlations in the training data explicitly. Multiple proposed methods outperform the state-of-the-art for multi-label sexism classification on a recently released dataset across five standard metrics.
Abstractive text summarization aims at generating human-like summaries by understanding and paraphrasing the given input content. Recent efforts based on sequence-to-sequence networks only allow the generation of a single summary. However, it is often desirable to accommodate the psycho-linguistic preferences of the intended audience while generating the summaries. In this work, we present a reinforcement learning based approach to generate formality-tailored summaries for an input article. Our novel input-dependent reward function aids in training the model with stylistic feedback on sampled and ground-truth summaries together. Once trained, the same model can generate formal and informal summary variants. Our automated and qualitative evaluations show the viability of the proposed framework.
Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets.
Sexism, an injustice that subjects women and girls to enormous suffering, manifests in blatant as well as subtle ways. In the wake of growing documentation of experiences of sexism on the web, the automatic categorization of accounts of sexism has the potential to assist social scientists and policy makers in utilizing such data to study and counter sexism better. The existing work on sexism classification, which is different from sexism detection, has certain limitations in terms of the categories of sexism used and/or whether they can co-occur. To the best of our knowledge, this is the first work on the multi-label classification of sexism of any kind(s), and we contribute the largest dataset for sexism categorization. We develop a neural solution for this multi-label classification that can combine sentence representations obtained using models such as BERT with distributional and linguistic word embeddings using a flexible, hierarchical architecture involving recurrent components and optional convolutional ones. Further, we leverage unlabeled accounts of sexism to infuse domain-specific elements into our framework. The best proposed method outperforms several deep learning as well as traditional machine learning baselines by an appreciable margin.
Natural languages change over time because they evolve to the needs of their users and the socio-technological environment. This study investigates the diachronic accuracy of pre-trained language models for downstream tasks in machine learning and user profiling. It asks the question: given that the social media platform and its users remain the same, how is language changing over time? How can these differences be used to track the changes in the affect around a particular topic? To our knowledge, this is the first study to show that it is possible to measure diachronic semantic drifts within social media and within the span of a few years.
Human communication includes information, opinions and reactions. Reactions are often captured by the affective-messages in written as well as verbal communications. While there has been work in affect modeling and to some extent affective content generation, the area of affective word distributions is not well studied. Synsets and lexica capture semantic relationships across words. These models, however, lack in encoding affective or emotional word interpretations. Our proposed model, Aff2Vec, provides a method for enriched word embeddings that are representative of affective interpretations of words. Aff2Vec outperforms the state-of-the-art in intrinsic word-similarity tasks. Further, the use of Aff2Vec representations outperforms baseline embeddings in downstream natural language understanding tasks including sentiment analysis, personality detection, and frustration prediction.
Email conversations are the primary mode of communication in enterprises. The email content expresses an individual’s needs, requirements and intentions. Affective information in the email text can be used to get an insight into the sender’s mood or emotion. We present a novel approach to model human frustration in text. We identify linguistic features that influence human perception of frustration and model it as a supervised learning task. The paper provides a detailed comparison across traditional regression and word distribution-based models. We report a mean-squared error (MSE) of 0.018 against human-annotated frustration for the best performing model. The approach establishes the importance of affect features in frustration prediction for email data. We further evaluate the efficacy of the proposed feature set and model in predicting other tone or affects in text, namely formality and politeness; results demonstrate a comparable performance against the state-of-the-art baselines.