Claim: This work is not advocating the use of LLMs for paper (meta-)reviewing. Instead, wepresent a comparative analysis to identify and distinguish LLM activities from human activities. Two research goals: i) Enable better recognition of instances when someone implicitly uses LLMs for reviewing activities; ii) Increase community awareness that LLMs, and AI in general, are currently inadequate for performing tasks that require a high level of expertise and nuanced judgment.This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload?This study focuses on the topic of LLMs as NLP Researchers, particularly examining the effectiveness of LLMs in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with “deficiency” labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) “LLMs as Reviewers”, how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) “LLMs as Metareviewers”, how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.
Performance of large language models (LLMs) may vary with different prompts or instructions of even the same task. One commonly recognized factor for this phenomenon is the model’s familiarity with the given prompt or instruction, which is typically estimated by its perplexity. However, finding the prompt with the lowest perplexity is challenging, given the enormous space of possible prompting phrases. In this paper, we propose monotonic paraphrasing (MonoPara), an end-to-end decoding strategy that paraphrases given prompts or instructions into their lower perplexity counterparts based on an ensemble of a paraphrase LM for prompt (or instruction) rewriting, and a target LM (i.e. the prompt or instruction executor) that constrains the generation for lower perplexity. The ensemble decoding process can efficiently paraphrase the original prompt without altering its semantic meaning, while monotonically decrease the perplexity of each generation as calculated by the target LM. We explore in detail both greedy and search-based decoding as two alternative decoding schemes of MonoPara. Notably, MonoPara does not require any training and can monotonically lower the perplexity of the paraphrased prompt or instruction, leading to improved performance of zero-shot LM prompting as evaluated on a wide selection of tasks. In addition, MonoPara is also shown to effectively improve LMs’ generalization on perturbed and unseen task instructions.
Large language models (LLMs) have acquired the ability to handle longer context lengths and understand nuances in text, expanding their dialogue capabilities beyond a single utterance. A popular user-facing application of LLMs is the multi-turn chat setting. Though longer chat memory and better understanding may seemingly benefit users, our paper exposes a vulnerability that leverages the multi-turn feature and strong learning ability of LLMs to harm the end-user: the backdoor. We demonstrate that LLMs can capture the combinational backdoor representation. Only upon presentation of triggers together does the backdoor activate. We also verify empirically that this representation is invariant to the position of the trigger utterance. Subsequently, inserting a single extra token into any two utterances of 5% of the data can cause over 99% Attack Success Rate (ASR). Our results with 3 triggers demonstrate that this framework is generalizable, compatible with any trigger in an adversary’s toolbox in a plug-and-play manner. Defending the backdoor can be challenging in the conversational setting because of the large input and output space. Our analysis indicates that the distributed backdoor exacerbates the current challenges by polynomially increasing the dimension of the attacked input space. Canonical textual defenses like ONION and BKI leverage auxiliary model forward passes over individual tokens, scaling exponentially with the input sequence length and struggling to maintain computational feasibility. To this end, we propose a decoding time defense – decayed contrastive decoding – that scales linearly with the assistant response sequence length and reduces the backdoor to as low as 0.35%.
Language models are often at risk of diverse backdoor attacks, especially data poisoning. Thus, it is important to investigate defense solutions for addressing them. Existing backdoor defense methods mainly focus on backdoor attacks with explicit triggers, leaving a universal defense against various backdoor attacks with diverse triggers largely unexplored. In this paper, we propose an end-to-end ensemble-based backdoor defense framework, DPoE (Denoised Product-of-Experts), which is inspired by the shortcut nature of backdoor attacks, to defend various backdoor attacks. DPoE consists of two models: a shallow model that captures the backdoor shortcuts and a main model that is prevented from learning the shortcuts. To address the label flip caused by backdoor attackers, DPoE incorporates a denoising design. Experiments on three NLP tasks show that DPoE significantly improves the defense performance against various types of backdoor triggers including word-level, sentence-level, and syntactic triggers. Furthermore, DPoE is also effective under a more challenging but practical setting that mixes multiple types of triggers.
Data poisoning backdoor attacks can cause undesirable behaviors in large language models (LLMs), and defending against them is of increasing importance. Existing defense mechanisms often assume that only one type of trigger is adopted by the attacker, while defending against multiple simultaneous and independent trigger types necessitates general defense frameworks and is relatively unexplored. In this paper, we propose Nested Product of Experts (NPoE) defense framework, which involves a mixture of experts (MoE) as a trigger-only ensemble within the PoE defense framework to simultaneously defend against multiple trigger types. During NPoE training, the main modelis trained in an ensemble with a mixture of smaller expert models that learn the features of backdoor triggers. At inference time, only the main model is used. Experimental results on sentiment analysis, hate speech detection, and question classification tasks demonstrate that NPoE effectively defends against a variety of triggers both separately and in trigger mixtures. Due to the versatility of the MoE structure in NPoE, this framework can be further expanded to defend against other attack settings.
Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.
Deep neural networks (DNNs) have been proven to be sensitive towards perturbations on input samples, and previous works highlight that adversarial samples are even more vulnerable than normal ones. In this work, this phenomenon is illustrated frWe first show that adversarial samples locate in steep and narrow local minima of the loss landscape (high sharpness) while normal samples, which differs distinctly from adversarial ones, reside in the loss surface that is more flatter (low sharpness).om the perspective of sharpness via visualizing the input loss landscape of models. Based on this, we propose a simple and effective sharpness-based detector to distinct adversarial samples by maximizing the loss increment within the region where the inference sample is located. Considering that the notion of sharpness of a loss landscape is relative, we further propose an adaptive optimization strategy in an attempt to fairly compare the relative sharpness among different samples. Experimental results show that our approach can outperform previous detection methods by large margins (average +6.6 F1 score) for four advanced attack strategies considered in this paper across three text classification tasks.
Adversarial robustness has attracted much attention recently, and the mainstream solution is adversarial training. However, the tradition of generating adversarial perturbations for each input embedding (in the settings of NLP) scales up the training computational complexity by the number of gradient steps it takes to obtain the adversarial samples. To address this problem, we leverage Flooding method which primarily aims at better generalization and we find promising in defending adversarial attacks. We further propose an effective criterion to bring hyper-parameter-dependent flooding into effect with a narrowed-down search space by measuring how the gradient steps taken within one epoch affect the loss of each batch. Our approach requires zero adversarial sample for training, and its time consumption is equivalent to fine-tuning, which can be 2-15 times faster than standard adversarial training. We experimentally show that our method improves BERT’s resistance to textual adversarial attacks by a large margin, and achieves state-of-the-art robust accuracy on various text classification and GLUE tasks.
Adversarial training, which minimizes the loss of adversarially perturbed examples, has received considerable attention. However, these methods require modifying all model parameters and optimizing the model from scratch, which is parameter inefficient and unfriendly to the already deployed models. As an alternative, we propose a pluggable defense module PlugAT, to provide robust predictions by adding a few trainable parameters to the model inputs while keeping the original model frozen. To reduce the potential side effects of using defense modules, we further propose a novel forgetting restricted adversarial training, which filters out bad adversarial examples that impair the performance of original ones. The PlugAT-equipped BERT model substantially improves robustness over several strong baselines on various text classification tasks, whilst training only 9.1% parameters. We observe that defense modules trained under the same model architecture have domain adaptation ability between similar text classification datasets.
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.