In this short position paper, we highlight the importance of numbers in clinical text. We first present a taxonomy of number variants. We then perform corpus analysis to analyze characteristics of number use in several clinical corpora. Based on our findings of extensive use of numbers, and limited understanding of the impact of numbers on clinical NLP tasks, we identify the need for a public benchmark that will support investigation of numerical processing tasks for the clinical domain.
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.
Although commonsense reasoning is greatly shaped by cultural and geographical factors, previous studies have predominantly centered on cultures grounded in the English language, potentially resulting in an Anglocentric bias. In this paper, we introduce IndoCulture, aimed at understanding the influence of geographical factors on language model reasoning ability, with a specific emphasis on the diverse cultures found within eleven Indonesian provinces. In contrast to prior work that has relied on templates (Yin et al., 2022) and online scrapping (Fung et al., 2024), we create IndoCulture by asking local people to manually develop a cultural context and plausible options, across a set of predefined topics. Evaluation of 27 language models reveals several insights: (1) the open-weight Llama–3 is competitive with GPT–4, while other open-weight models struggle, with accuracies below 50%; (2) there is a general pattern of models generally performing better for some provinces, such as Bali and West Java, and less well for others; and (3) the inclusion of location context enhances performance, especially for larger models like GPT–4, emphasizing the significance of geographical context in commonsense reasoning.1
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes sentiment and machine translation datasets, and bilingual lexicons. We provide extensive analyses and describe challenges for creating such resources. We hope this work can spark NLP research on Indonesian and other underrepresented languages.
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.
This paper describes the submissions of the Natural Language Processing (NLP) team from the Australian Research Council Industrial Transformation Training Centre (ITTC) for Cognitive Computing in Medical Technologies to the SemEval 2023 Task 7, i.e., multi-evidence natural language inference for clinical trial data (NLI4CT). More specifically, we were working on subtask 2 whose objective is to identify the relevant parts of the premise from clinical trial report that justify the truth of information in the statement. We approach the evidence retrieval problem as a document retrieval and sentence similarity task. Our results show that the task poses some challenges which involve dealing with complex sentences and implicit evidences.
NLP research is impeded by a lack of resources and awareness of the challenges presented by underrepresented languages and dialects. Focusing on the languages spoken in Indonesia, the second most linguistically diverse and the fourth most populous nation of the world, we provide an overview of the current state of NLP research for Indonesia’s 700+ languages. We highlight challenges in Indonesian NLP and how these affect the performance of current NLP systems. Finally, we provide general recommendations to help develop NLP technology not only for languages of Indonesia but also other underrepresented languages.
We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect ~18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research.
Coreference resolution is an NLP task to find out whether the set of referring expressions belong to the same concept in discourse. A multi-pass sieve is a deterministic coreference model that implements several layers of sieves, where each sieve takes a pair of correlated mentions from a collection of non-coherent mentions. The multi-pass sieve is based on the principle of high precision, followed by increased recall in each sieve. In this work, we examine the portability of the multi-pass sieve coreference resolution model to the Indonesian language. We conduct the experiment on 201 Wikipedia documents and the multi-pass sieve system yields 72.74% of MUC F-measure and 52.18% of BCUBED F-measure.
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.
Although Indonesian is known to be the fourth most frequently used language over the internet, the research progress on this language in natural language processing (NLP) is slow-moving due to a lack of available resources. In response, we introduce the first-ever vast resource for training, evaluation, and benchmarking on Indonesian natural language understanding (IndoNLU) tasks. IndoNLU includes twelve tasks, ranging from single sentence classification to pair-sentences sequence labeling with different levels of complexity. The datasets for the tasks lie in different domains and styles to ensure task diversity. We also provide a set of Indonesian pre-trained models (IndoBERT) trained from a large and clean Indonesian dataset (Indo4B) collected from publicly available sources such as social media texts, blogs, news, and websites. We release baseline models for all twelve tasks, as well as the framework for benchmark evaluation, thus enabling everyone to benchmark their system performances.
This paper describes our submissions into the ComVe challenge, the SemEval 2020 Task 4. This evaluation task consists of three sub-tasks that test commonsense comprehension by identifying sentences that do not make sense and explain why they do not. In subtask A, we use Roberta to find which sentence does not make sense. In subtask B, besides using BERT, we also experiment with replacing the dataset with MNLI when selecting the best explanation from the provided options why the given sentence does not make sense. In subtask C, we utilize the MNLI model from subtask B to evaluate the explanation generated by Roberta and GPT-2 by exploiting the contradiction of the sentence and their explanation. Our system submission records a performance of 88.2%, 80.5%, and BLEU 5.5 for those three subtasks, respectively.
This paper presents Iswara’s participation in the WNUT-2020 Task 2 “Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings”,which tries to classify whether a certain tweet is considered informative or not. We proposed a method that utilizes word embeddings and using word occurrence related to the topic for this task. We compare several models to get the best performance. Results show that pairing BERT with word occurrences outperforms fastText with F1-Score, precision, recall, and accuracy on test data of 76%, 81%, 72%, and 79%, respectively
Twitter is an excellent source of data for NLP researches as it offers tremendous amount of textual data. However, processing tweet to extract meaningful information is very challenging, at least for two reasons: (i) using nonstandard words as well as informal writing manner, and (ii) code-mixing issues, which is combining multiple languages in single tweet conversation. Most of the previous works have addressed both issues in isolated different task. In this study, we work on normalization task in code-mixed Twitter data, more specifically in Indonesian-English language. We propose a pipeline that consists of four modules, i.e tokenization, language identification, lexical normalization, and translation. Another contribution is to provide a gold standard of Indonesian-English code-mixed data for each module.
Ambiguity is a problem we frequently face in Natural Language Processing. Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. However, research in WSD for Indonesian is still rare to find. The availability of English-Indonesian parallel corpora and WordNet for both languages can be used as training data for WSD by applying Cross-Lingual WSD method. This training data is used as an input to build a model using supervised machine learning algorithms. Our research also examines the use of Word Embedding features to build the WSD model.
We present KOI (Knowledge of Incidents), a system that given news articles as input, builds a knowledge graph (KOI-KG) of incidental events. KOI-KG can then be used to efficiently answer questions such “How many killing incidents happened in 2017 that involve Sean?” The required steps in building the KG include: (i) document preprocessing involving word sense disambiguation, named-entity recognition, temporal expression recognition and normalization, and semantic role labeling; (ii) incidental event extraction and coreference resolution via document clustering; and (iii) KG construction and population.
We propose keyphrases extraction technique to extract important terms from the healthcare user-generated contents. We employ deep learning architecture, i.e. Long Short-Term Memory, and leverage word embeddings, medical concepts from a knowledge base, and linguistic components as our features. The proposed model achieves 61.37% F-1 score. Experimental results indicate that our proposed approach outperforms the baseline methods, i.e. RAKE and CRF, on the task of extracting keyphrases from Indonesian health forum posts.
Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.