Weijia Shi


2024

pdf bib
Teaching LLMs to Abstain across Languages via Multilingual Feedback
Shangbin Feng | Weijia Shi | Yike Wang | Wenxuan Ding | Orevaoghene Ahia | Shuyue Stella Li | Vidhisha Balachandran | Sunayana Sitaram | Yulia Tsvetkov
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Multilingual LLMs often have knowledge disparities across languages, with larger gaps in under-resourced languages. Teaching LLMs to abstain in the face of knowledge gaps is thus a promising strategy to mitigate hallucinations in multilingual settings. However, previous studies on LLM abstention primarily focus on English; we find that directly applying existing solutions beyond English results in up to 20.5% performance gaps between high and low-resource languages, potentially due to LLMs’ drop in calibration and reasoning beyond a few resource-rich languages. To this end, we propose strategies to enhance LLM abstention by learning from multilingual feedback, where LLMs self-reflect on proposed answers in one language by generating multiple feedback items in related languages: we show that this helps identifying the knowledge gaps across diverse languages, cultures, and communities. Extensive experiments demonstrate that our multilingual feedback approach outperforms various strong baselines, achieving up to 9.2% improvement for low-resource languages across three black-box and open models on three datasets, featuring open-book, closed-book, and commonsense QA. Further analysis reveals that multilingual feedback is both an effective and a more equitable abstain strategy to serve diverse language speakers, and cultural factors have great impact on language selection and LLM abstention behavior, highlighting future directions for multilingual and multi-cultural reliable language modeling.

pdf bib
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)
Sachin Kumar | Vidhisha Balachandran | Chan Young Park | Weijia Shi | Shirley Anugrah Hayati | Yulia Tsvetkov | Noah Smith | Hannaneh Hajishirzi | Dongyeop Kang | David Jurgens
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

pdf bib
REPLUG: Retrieval-Augmented Black-Box Language Models
Weijia Shi | Sewon Min | Michihiro Yasunaga | Minjoon Seo | Richard James | Mike Lewis | Luke Zettlemoyer | Wen-tau Yih
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We introduce REPLUG, a retrieval-augmented language modeling framework that treats the language model (LM) as a black box and augments it with a tuneable retrieval model. Unlike prior retrieval-augmented LMs that train language models with special cross-attention mechanisms to encode the retrieved text, REPLUG simply prepends retrieved documents to the input for the frozen black-box LM. This simple design can be easily applied to any existing language models. Furthermore, we show that the LM can be used to supervise the retrieval model, which can then find documents that help the LM make better predictions. Our experiments demonstrate that REPLUG with the tuned retriever significantly improves the performance of GPT-3 (175B) on language modeling by 6.3%, as well as the performance of Codex on five-shot MMLU by 5.1%. Code is publicly released at github.com/swj0419/REPLUG.

pdf bib
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
Weijia Shi | Xiaochuang Han | Mike Lewis | Yulia Tsvetkov | Luke Zettlemoyer | Wen-tau Yih
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations. To mitigate this issue, we present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the output probabilities when a model is used with and without context. Our experiments show that CAD, without additional training, significantly improves the faithfulness of different LM families, including OPT, GPT, LLaMA, and FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality metrics). Furthermore, CAD is particularly effective in overriding a model’s prior knowledge when it contradicts the provided context, leading to substantial improvements in tasks where resolving the knowledge conflict is essential. Our code is publicly released at https://github.com/xhan77/context-aware-decoding.

pdf bib
Instruction-tuned Language Models are Better Knowledge Learners
Zhengbao Jiang | Zhiqing Sun | Weijia Shi | Pedro Rodriguez | Chunting Zhou | Graham Neubig | Xi Lin | Wen-tau Yih | Srini Iyer
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In order for large language model (LLM)-based assistants to effectively adapt to evolving information needs, it must be possible to update their factual knowledge through continued training on new data. The standard recipe for doing so involves continued pre-training on new documents followed by instruction-tuning on question-answer (QA) pairs. However, we find that LLMs trained with this recipe struggle to answer questions, even though the perplexity of documents is minimized. We found that QA pairs are generally straightforward, while documents are more complex, weaving many factual statements together in an intricate manner. Therefore, we hypothesize that it is beneficial to expose LLMs to QA pairs before continued pre-training on documents so that the process of encoding knowledge from complex documents takes into account how this knowledge is accessed through questions. Based on this, we propose pre-instruction-tuning (PIT), a method that instruction-tunes on questions prior to training on documents. This contrasts with standard instruction-tuning, which learns how to extract knowledge after training on documents. Extensive experiments and ablation studies demonstrate that pre-instruction-tuning significantly enhances the ability of LLMs to absorb knowledge from new documents, outperforming standard instruction-tuning by 17.8%.

pdf bib
Don’t Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration
Shangbin Feng | Weijia Shi | Yike Wang | Wenxuan Ding | Vidhisha Balachandran | Yulia Tsvetkov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite efforts to expand the knowledge of large language models (LLMs), knowledge gaps—missing or outdated information in LLMs—might always persist given the evolving nature of knowledge. In this work, we study approaches to identify LLM knowledge gaps and abstain from answering questions when knowledge gaps are present. We first adapt existing approaches to model calibration or adaptation through fine-tuning/prompting and analyze their ability to abstain from generating low-confidence outputs. Motivated by their failures in self-reflection and over-reliance on held-out sets, we propose two novel approaches that are based on model collaboration, i.e., LLMs probing other LLMs for knowledge gaps, either cooperatively or competitively. Extensive experiments with three LLMs on four QA tasks featuring diverse knowledge domains demonstrate that both cooperative and competitive approaches to unveiling LLM knowledge gaps achieve up to 19.3% improvements on abstain accuracy against the strongest baseline. Further analysis reveals that our abstention methods pinpoint failure cases in retrieval augmentation and knowledge gaps in multi-hop reasoning.

pdf bib
Proceedings of the 3rd Workshop on Knowledge Augmented Methods for NLP
Wenhao Yu | Weijia Shi | Michihiro Yasunaga | Meng Jiang | Chenguang Zhu | Hannaneh Hajishirzi | Luke Zettlemoyer | Zhihan Zhang
Proceedings of the 3rd Workshop on Knowledge Augmented Methods for NLP

2023

pdf bib
One Embedder, Any Task: Instruction-Finetuned Text Embeddings
Hongjin Su | Weijia Shi | Jungo Kasai | Yizhong Wang | Yushi Hu | Mari Ostendorf | Wen-tau Yih | Noah A. Smith | Luke Zettlemoyer | Tao Yu
Findings of the Association for Computational Linguistics: ACL 2023

We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets. Our model, code, and data are available at https://instructor-embedding.github.io.

pdf bib
Nonparametric Masked Language Modeling
Sewon Min | Weijia Shi | Mike Lewis | Xilun Chen | Wen-tau Yih | Hannaneh Hajishirzi | Luke Zettlemoyer
Findings of the Association for Computational Linguistics: ACL 2023

Existing language models (LMs) predict tokens with a softmax over a finite vocabulary, which can make it difficult to predict rare tokens or phrases. We introduce NPM, the first nonparametric masked language model that replaces this softmax with a nonparametric distribution over every phrase in a reference corpus. NPM fills in the [MASK] solely from retrieving a token from a text corpus. We show that NPM can be efficiently trained with a contrastive objective and an in-batch approximation to full corpus retrieval. Zero-shot evaluation on 16 tasks including classification, fact probing and question answering demonstrates that NPM outperforms significantly larger parametric models, either with or without a retrieve-and-generate approach. It is particularly better at dealing with rare patterns (word senses or facts) and predicting rare or nearly unseen words (e.g., non-Latin script). We release the model and code at github.com/facebookresearch/NPM.

pdf bib
RoMQA: A Benchmark for Robust, Multi-evidence, Multi-answer Question Answering
Victor Zhong | Weijia Shi | Wen-tau Yih | Luke Zettlemoyer
Findings of the Association for Computational Linguistics: EMNLP 2023

We introduce RoMQA, the first benchmark for robust, multi-evidence, multi-answer question answering (QA). RoMQA contains clusters of questions that are derived from related constraints mined from the Wikidata knowledge graph. RoMQA evaluates robustness of QA models to varying constraints by measuring worst-case performance within each question cluster. Compared to prior QA datasets, RoMQA has more human-written questions that require reasoning over more evidence text and have, on average, many more correct answers. In addition, human annotators rate RoMQA questions as more natural or likely to be asked by people. We evaluate state-of-the-art large language models in zero-shot, few-shot, and fine-tuning settings, and find that RoMQA is challenging: zeroshot and few-shot models perform similarly to naive baselines, while supervised retrieval methods perform well below gold evidence upper bounds. Moreover, existing models are not robust to variations in question constraints, but can be made more robust by tuning on clusters of related questions. Our results show that RoMQA is a challenging benchmark for large language models, and provides a quantifiable test to build more robust QA methods.

pdf bib
Getting MoRE out of Mixture of Language Model Reasoning Experts
Chenglei Si | Weijia Shi | Chen Zhao | Luke Zettlemoyer | Jordan Boyd-Graber
Findings of the Association for Computational Linguistics: EMNLP 2023

While recent large language models (LLMs) improve on various question answering (QA) datasets, it remains difficult for a single model to generalize across question types that require distinct reasoning abilities. We provide empirical evidence that state-of-the-art LLMs suffer from poor generalizability on reasoning types beyond those seen in the prompt. To remedy this, we propose a Mixture-of-Reasoning-Experts (MORE) framework that ensembles diverse specialized language models. We specialize the backbone language model with prompts optimized for different reasoning categories, including factual, multihop, mathematical, and commonsense reasoning. Our key insight is to leverage agreement among the specialized experts to select the best answer for each question, or to abstain from answering. This gives MORE higher accuracy than any single specialized model on a collection of 12 QA datasets from four reasoning types. Beyond generalizability, the interpretable design of MORE improves selective question answering results compared to baselines without incorporating inter-expert agreement. This framework is also more interpretable and useful to human consumers of QA outputs. Our human study confirms that presenting expert predictions and the answer selection process helps annotators more accurately calibrate when to trust the system’s output. We release all code and data to facilitate future work.

pdf bib
Toward Human Readable Prompt Tuning: Kubrick’s The Shining is a good movie, and a good prompt too?
Weijia Shi | Xiaochuang Han | Hila Gonen | Ari Holtzman | Yulia Tsvetkov | Luke Zettlemoyer
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models can perform downstream tasks in a zero-shot fashion, given natural language prompts that specify the desired behavior. Such prompts are typically hand engineered, but can also be learned with gradient-based methods from labeled data. However, it is underexplored what factors make the prompts effective, especially when the prompts are in natural language. In this paper, we investigate common attributes shared by effective prompts in classification problems. We first propose a human readable prompt tuning method (FluentPrompt) based on Langevin dynamics that incorporates a fluency constraint to find a distribution of effective and fluent prompts. Our analysis reveals that effective prompts are topically related to the task domain and calibrate the prior probability of output labels. Based on these findings, we also propose a method for generating prompts using only unlabeled data, outperforming strong baselines by an average of 7.0% accuracy across three tasks.

2022

pdf bib
Nearest Neighbor Zero-Shot Inference
Weijia Shi | Julian Michael | Suchin Gururangan | Luke Zettlemoyer
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Retrieval-augmented language models (LMs) use non-parametric memory to substantially outperform their non-retrieval counterparts on perplexity-based evaluations, but it is an open question whether they achieve similar gains in few- and zero-shot end-task accuracy. We extensively study one such model, the k-nearest neighbor LM (kNN-LM), showing that the gains marginally transfer. The main challenge is to achieve coverage of the verbalizer tokens that define the different end-task class labels. To address this challenge, we also introduce kNN-Prompt, a simple and effective kNN-LM with automatically expanded fuzzy verbalizers (e.g. to expand “terrible” to also include “silly” and other task-specific synonyms for sentiment classification). Across nine diverse end-tasks, using kNN-Prompt with GPT-2 large yields significant performance boosts over strong zeroshot baselines (13.4% absolute improvement over the base LM on average). We also show that other advantages of non-parametric augmentation hold for end tasks; kNN-Prompt is effective for domain adaptation with no further training, and gains increase with the size of the retrieval model.

2021

pdf bib
DESCGEN: A Distantly Supervised Datasetfor Generating Entity Descriptions
Weijia Shi | Mandar Joshi | Luke Zettlemoyer
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Short textual descriptions of entities provide summaries of their key attributes and have been shown to be useful sources of background knowledge for tasks such as entity linking and question answering. However, generating entity descriptions, especially for new and long-tail entities, can be challenging since relevant information is often scattered across multiple sources with varied content and style. We introduce DESCGEN: given mentions spread over multiple documents, the goal is to generate an entity summary description. DESCGEN consists of 37K entity descriptions from Wikipedia and Fandom, each paired with nine evidence documents on average. The documents were collected using a combination of entity linking and hyperlinks into the entity pages, which together provide high-quality distant supervision. Compared to other multi-document summarization tasks, our task is entity-centric, more abstractive, and covers a wide range of domains. We also propose a two-stage extract-then-generate baseline and show that there exists a large gap (19.9% in ROUGE-L) between state-of-art models and human performance, suggesting that the data will support significant future work.

pdf bib
Cross-lingual Entity Alignment with Incidental Supervision
Muhao Chen | Weijia Shi | Ben Zhou | Dan Roth
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose a new model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a self-learning based alignment learning process to iteratively induce the correspondence of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.

2020

pdf bib
Design Challenges in Low-resource Cross-lingual Entity Linking
Xingyu Fu | Weijia Shi | Xiaodong Yu | Zian Zhao | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Cross-lingual Entity Linking (XEL), the problem of grounding mentions of entities in a foreign language text into an English knowledge base such as Wikipedia, has seen a lot of research in recent years, with a range of promising techniques. However, current techniques do not rise to the challenges introduced by text in low-resource languages (LRL) and, surprisingly, fail to generalize to text not taken from Wikipedia, on which they are usually trained. This paper provides a thorough analysis of low-resource XEL techniques, focusing on the key step of identifying candidate English Wikipedia titles that correspond to a given foreign language mention. Our analysis indicates that current methods are limited by their reliance on Wikipedia’s interlanguage links and thus suffer when the foreign language’s Wikipedia is small. We conclude that the LRL setting requires the use of outside-Wikipedia cross-lingual resources and present a simple yet effective zero-shot XEL system, QuEL, that utilizes search engines query logs. With experiments on 25 languages, QuEL shows an average increase of 25% in gold candidate recall and of 13% in end-to-end linking accuracy over state-of-the-art baselines.

2019

pdf bib
Retrofitting Contextualized Word Embeddings with Paraphrases
Weijia Shi | Muhao Chen | Pei Zhou | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Contextualized word embeddings, such as ELMo, provide meaningful representations for words and their contexts. They have been shown to have a great impact on downstream applications. However, we observe that the contextualized embeddings of a word might change drastically when its contexts are paraphrased. As these embeddings are over-sensitive to the context, the downstream model may make different predictions when the input sentence is paraphrased. To address this issue, we propose a post-processing approach to retrofit the embedding with paraphrases. Our method learns an orthogonal transformation on the input space of the contextualized word embedding model, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the proposed method significantly improves ELMo on various sentence classification and inference tasks.

pdf bib
Examining Gender Bias in Languages with Grammatical Gender
Pei Zhou | Weijia Shi | Jieyu Zhao | Kuan-Hao Huang | Muhao Chen | Ryan Cotterell | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent studies have shown that word embeddings exhibit gender bias inherited from the training corpora. However, most studies to date have focused on quantifying and mitigating such bias only in English. These analyses cannot be directly extended to languages that exhibit morphological agreement on gender, such as Spanish and French. In this paper, we propose new metrics for evaluating gender bias in word embeddings of these languages and further demonstrate evidence of gender bias in bilingual embeddings which align these languages with English. Finally, we extend an existing approach to mitigate gender bias in word embedding of these languages under both monolingual and bilingual settings. Experiments on modified Word Embedding Association Test, word similarity, word translation, and word pair translation tasks show that the proposed approaches can effectively reduce the gender bias while preserving the utility of the original embeddings.

pdf bib
Learning Bilingual Word Embeddings Using Lexical Definitions
Weijia Shi | Muhao Chen | Yingtao Tian | Kai-Wei Chang
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Bilingual word embeddings, which represent lexicons of different languages in a shared embedding space, are essential for supporting semantic and knowledge transfers in a variety of cross-lingual NLP tasks. Existing approaches to training bilingual word embeddings require either large collections of pre-defined seed lexicons that are expensive to obtain, or parallel sentences that comprise coarse and noisy alignment. In contrast, we propose BiLex that leverages publicly available lexical definitions for bilingual word embedding learning. Without the need of predefined seed lexicons, BiLex comprises a novel word pairing strategy to automatically identify and propagate the precise fine-grain word alignment from lexical definitions. We evaluate BiLex in word-level and sentence-level translation tasks, which seek to find the cross-lingual counterparts of words and sentences respectively. BiLex significantly outperforms previous embedding methods on both tasks.