Xiang Chen


2024

pdf bib
TAME-RD: Text Assisted Replication of Image Multi-Adjustments for Reverse Designing
Pooja Guhan | Uttaran Bhattacharya | Somdeb Sarkhel | Vahid Azizi | Xiang Chen | Saayan Mitra | Aniket Bera | Dinesh Manocha
Findings of the Association for Computational Linguistics: ACL 2024

Given a source and its edited version performed based on human instructions in natural language, how do we extract the underlying edit operations, to automatically replicate similar edits on other images? This is the problem of reverse designing, and we present TAME-RD, a model to solve this problem. TAME-RD automatically learns from the complex interplay of image editing operations and the natural language instructions to learn fully specified edit operations. It predicts both the underlying image edit operations as discrete categories and their corresponding parameter values in the continuous space.We accomplish this by mapping together the contextual information from the natural language text and the structural differences between the corresponding source and edited images using the concept of pre-post effect. We demonstrate the efficiency of our network through quantitative evaluations on multiple datasets. We observe improvements of 6-10% on various accuracy metrics and 1.01X-4X on the RMSE score and the concordance correlation coefficient for the corresponding parameter values on the benchmark GIER dataset. We also introduce I-MAD, a new two-part dataset: I-MAD-Dense, a collection of approximately 100K source and edited images, together with automatically generated text instructions and annotated edit operations, and I-MAD-Pro, consisting of about 1.6K source and edited images, together with text instructions and annotated edit operations provided by professional editors. On our dataset, we observe absolute improvements of 1-10% on the accuracy metrics and 1.14X–5X on the RMSE score.

pdf bib
OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs
Jintian Zhang | Cheng Peng | Mengshu Sun | Xiang Chen | Lei Liang | Zhiqiang Zhang | Jun Zhou | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs’ performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.

pdf bib
Knowledge Mechanisms in Large Language Models: A Survey and Perspective
Mengru Wang | Yunzhi Yao | Ziwen Xu | Shuofei Qiao | Shumin Deng | Peng Wang | Xiang Chen | Jia-Chen Gu | Yong Jiang | Pengjun Xie | Fei Huang | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Understanding knowledge mechanisms in Large Language Models (LLMs) is crucial for advancing towards trustworthy AGI. This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution. Knowledge utilization delves into the mechanism of memorization, comprehension and application, and creation. Knowledge evolution focuses on the dynamic progression of knowledge within individual and group LLMs. Moreover, we discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address. We hope this work can help understand knowledge in LLMs and provide insights for future research.

pdf bib
Unified Hallucination Detection for Multimodal Large Language Models
Xiang Chen | Chenxi Wang | Yida Xue | Ningyu Zhang | Xiaoyan Yang | Qiang Li | Yue Shen | Lei Liang | Jinjie Gu | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite significant strides in multimodal tasks, Multimodal Large Language Models (MLLMs) are plagued by the critical issue of hallucination. The reliable detection of such hallucinations in MLLMs has, therefore, become a vital aspect of model evaluation and the safeguarding of practical application deployment. Prior research in this domain has been constrained by a narrow focus on singular tasks, an inadequate range of hallucination categories addressed, and a lack of detailed granularity. In response to these challenges, our work expands the investigative horizons of hallucination detection. We present a novel meta-evaluation benchmark, MHaluBench, meticulously crafted to facilitate the evaluation of advancements in hallucination detection methods. Additionally, we unveil a novel unified multimodal hallucination detection framework, UNIHD, which leverages a suite of auxiliary tools to validate the occurrence of hallucinations robustly. We demonstrate the effectiveness of UNIHD through meticulous evaluation and comprehensive analysis. We also provide strategic insights on the application of specific tools for addressing various categories of hallucinations.

pdf bib
DeCoT: Debiasing Chain-of-Thought for Knowledge-Intensive Tasks in Large Language Models via Causal Intervention
Junda Wu | Tong Yu | Xiang Chen | Haoliang Wang | Ryan Rossi | Sungchul Kim | Anup Rao | Julian McAuley
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) often require task-relevant knowledge to augment their internal knowledge through prompts. However, simply injecting external knowledge into prompts does not guarantee that LLMs can identify and use relevant information in the prompts to conduct chain-of-thought reasoning, especially when the LLM’s internal knowledge is derived from biased information on the pretraining data. In this paper, we propose a novel causal view to formally explain the internal knowledge bias of LLMs via a Structural Causal Model (SCM). We review the chain-of-thought (CoT) prompting from a causal perspective and discover that the biased information from pretrained models can impair LLMs’ reasoning abilities. When the CoT reasoning paths are misled by irrelevant information from prompts and are logically incorrect, simply editing factual information is insufficient to reach the correct answer. To estimate the confounding effect on CoT reasoning in LLMs, we use external knowledge as an instrumental variable. We further introduce CoT as a mediator to conduct front-door adjustment and generate logically correct CoTs where the spurious correlation between LLMs’ pretrained knowledge and task queries is reduced. With extensive experiments, we validate that our approach enables more accurate CoT reasoning and enhances LLM generation on knowledge-intensive tasks.

2023

pdf bib
Reasoning with Language Model Prompting: A Survey
Shuofei Qiao | Yixin Ou | Ningyu Zhang | Xiang Chen | Yunzhi Yao | Shumin Deng | Chuanqi Tan | Fei Huang | Huajun Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).

pdf bib
Event-Centric Query Expansion in Web Search
Yanan Zhang | Weijie Cui | Yangfan Zhang | Xiaoling Bai | Zhe Zhang | Jin Ma | Xiang Chen | Tianhua Zhou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), the QE system used in a famous Chinese search engine. EQE utilizes a novel event retrieval framework that consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking, which can select the best expansion from a significant amount of potential events rapidly and accurately. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to serve as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observed that the EQE system has significantly improved many indicators compared to the baseline. The system has been deployed in a real production environment and serves hundreds of millions of users.

pdf bib
INTELMO: Enhancing Models’ Adoption of Interactive Interfaces
Chunxu Yang | Chien-Sheng Wu | Lidiya Murakhovs’ka | Philippe Laban | Xiang Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper presents INTELMO, an easy-to-use library to help model developers adopt user-faced interactive interfaces and articles from real-time RSS sources for their language models. The library categorizes common NLP tasks and provides default style patterns, streamlining the process of creating interfaces with minimal code modifications while ensuring an intuitive user experience. Moreover, INTELMO employs a multi-granular hierarchical abstraction to provide developers with fine-grained and flexible control over user interfaces. INTELMO is under active development, with document available at https://intelmo.github.io.

2022

pdf bib
ReSel: N-ary Relation Extraction from Scientific Text and Tables by Learning to Retrieve and Select
Yuchen Zhuang | Yinghao Li | Junyang Zhang | Yue Yu | Yingjun Mou | Xiang Chen | Le Song | Chao Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We study the problem of extracting N-ary relation tuples from scientific articles. This task is challenging because the target knowledge tuples can reside in multiple parts and modalities of the document. Our proposed method ReSel decomposes this task into a two-stage procedure that first retrieves the most relevant paragraph/table and then selects the target entity from the retrieved component. For the high-level retrieval stage, ReSel designs a simple and effective feature set, which captures multi-level lexical and semantic similarities between the query and components. For the low-level selection stage, ReSel designs a cross-modal entity correlation graph along with a multi-view architecture, which models both semantic and document-structural relations between entities. Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.

pdf bib
Title2Event: Benchmarking Open Event Extraction with a Large-scale Chinese Title Dataset
Haolin Deng | Yanan Zhang | Yangfan Zhang | Wangyang Ying | Changlong Yu | Jun Gao | Wei Wang | Xiaoling Bai | Nan Yang | Jin Ma | Xiang Chen | Tianhua Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Event extraction (EE) is crucial to downstream tasks such as new aggregation and event knowledge graph construction. Most existing EE datasets manually define fixed event types and design specific schema for each of them, failing to cover diverse events emerging from the online text. Moreover, news titles, an important source of event mentions, have not gained enough attention in current EE research. In this paper, we present Title2Event, a large-scale sentence-level dataset benchmarking Open Event Extraction without restricting event types. Title2Event contains more than 42,000 news titles in 34 topics collected from Chinese web pages. To the best of our knowledge, it is currently the largest manually annotated Chinese dataset for open event extraction. We further conduct experiments on Title2Event with different models and show that the characteristics of titles make it challenging for event extraction, addressing the significance of advanced study on this problem. The dataset and baseline codes are available at https://open-event-hub.github.io/title2event.

pdf bib
DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
Ningyu Zhang | Xin Xu | Liankuan Tao | Haiyang Yu | Hongbin Ye | Shuofei Qiao | Xin Xie | Xiang Chen | Zhoubo Li | Lei Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.

pdf bib
Good Visual Guidance Make A Better Extractor: Hierarchical Visual Prefix for Multimodal Entity and Relation Extraction
Xiang Chen | Ningyu Zhang | Lei Li | Yunzhi Yao | Shumin Deng | Chuanqi Tan | Fei Huang | Luo Si | Huajun Chen
Findings of the Association for Computational Linguistics: NAACL 2022

Multimodal named entity recognition and relation extraction (MNER and MRE) is a fundamental and crucial branch in information extraction. However, existing approaches for MNER and MRE usually suffer from error sensitivity when irrelevant object images incorporated in texts. To deal with these issues, we propose a novel Hierarchical Visual Prefix fusion NeTwork (HVPNeT) for visual-enhanced entity and relation extraction, aiming to achieve more effective and robust performance. Specifically, we regard visual representation as pluggable visual prefix to guide the textual representation for error insensitive forecasting decision. We further propose a dynamic gated aggregation strategy to achieve hierarchical multi-scaled visual features as visual prefix for fusion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our method, and achieve state-of-the-art performance.

pdf bib
Towards Realistic Low-resource Relation Extraction: A Benchmark with Empirical Baseline Study
Xin Xu | Xiang Chen | Ningyu Zhang | Xin Xie | Xi Chen | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in https://github.com/zjunlp/LREBench.

pdf bib
Discord Questions: A Computational Approach To Diversity Analysis in News Coverage
Philippe Laban | Chien-Sheng Wu | Lidiya Murakhovs’ka | Xiang Chen | Caiming Xiong
Findings of the Association for Computational Linguistics: EMNLP 2022

There are many potential benefits to news readers accessing diverse sources. Modern news aggregators do the hard work of organizing the news, offering readers a plethora of source options, but choosing which source to read remains challenging.We propose a new framework to assist readers in identifying source differences and gaining an understanding of news coverage diversity.The framework is based on the generation of Discord Questions: questions with a diverse answer pool, explicitly illustrating source differences.To assemble a prototype of the framework, we focus on two components: (1) discord question generation, the task of generating questions answered differently by sources, for which we propose an automatic scoring method, and create a model that improves performance from current question generation (QG) methods by 5%, (2) answer consolidation, the task of grouping answers to a question that are semantically similar, for which we collect data and repurpose a method that achieves 81% balanced accuracy on our realistic test set.We illustrate the framework’s feasibility through a prototype interface. Even though model performance at discord QG still lags human performance by more than 15%, generated questions are judged to be more interesting than factoid questions and can reveal differences in the level of detail, sentiment, and reasoning of sources in news coverage. Code is available at https://github.com/Salesforce/discord_questions.

pdf bib
LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable Prompting
Xiang Chen | Lei Li | Shumin Deng | Chuanqi Tan | Changliang Xu | Fei Huang | Luo Si | Huajun Chen | Ningyu Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Most NER methods rely on extensive labeled data for model training, which struggles in the low-resource scenarios with limited training data. Existing dominant approaches usually suffer from the challenge that the target domain has different label sets compared with a resource-rich source domain, which can be concluded as class transfer and domain transfer. In this paper, we propose a lightweight tuning paradigm for low-resource NER via pluggable prompting (LightNER). Specifically, we construct the unified learnable verbalizer of entity categories to generate the entity span sequence and entity categories without any label-specific classifiers, thus addressing the class transfer issue. We further propose a pluggable guidance module by incorporating learnable parameters into the self-attention layer as guidance, which can re-modulate the attention and adapt pre-trained weights. Note that we only tune those inserted module with the whole parameter of the pre-trained language model fixed, thus, making our approach lightweight and flexible for low-resource scenarios and can better transfer knowledge across domains. Experimental results show that LightNER can obtain comparable performance in the standard supervised setting and outperform strong baselines in low-resource settings.

2021

pdf bib
ZJUKLAB at SemEval-2021 Task 4: Negative Augmentation with Language Model for Reading Comprehension of Abstract Meaning
Xin Xie | Xiangnan Chen | Xiang Chen | Yong Wang | Ningyu Zhang | Shumin Deng | Huajun Chen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our systems for the three Subtasks of SemEval Task4: Reading Comprehension of Abstract Meaning (ReCAM). We explain the algorithms used to learn our models and the process of tuning the algorithms and selecting the best model. Inspired by the similarity of the ReCAM task and the language pre-training, we propose a simple yet effective technology, namely, negative augmentation with language model. Evaluation results demonstrate the effectiveness of our proposed approach. Our models achieve the 4th rank on both official test sets of Subtask 1 and Subtask 2 with an accuracy of 87.9% and an accuracy of 92.8%, respectively. We further conduct comprehensive model analysis and observe interesting error cases, which may promote future researches. The code and dataset used in our paper can be found at https://github.com/CheaSim/SemEval2021. The leaderboard can be found at https://competitions.codalab.org/competitions/26153.

pdf bib
WIND: Weighting Instances Differentially for Model-Agnostic Domain Adaptation
Xiang Chen | Yue Cao | Xiaojun Wan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning
Jianguo Zhang | Trung Bui | Seunghyun Yoon | Xiang Chen | Zhiwei Liu | Congying Xia | Quan Hung Tran | Walter Chang | Philip Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.