Chandan Singh


2025

pdf bib
Towards Consistent Natural-Language Explanations via Explanation-Consistency Finetuning
Yanda Chen | Chandan Singh | Xiaodong Liu | Simiao Zuo | Bin Yu | He He | Jianfeng Gao
Proceedings of the 31st International Conference on Computational Linguistics

Large language models (LLMs) often generate convincing, fluent explanations. However, different from humans, they often generate inconsistent explanations on different inputs. For example, an LLM may explain “all birds can fly” when answering the question “Can sparrows fly?” but meanwhile answer “no” to the related question “Can penguins fly?”. Explanations should be consistent across related examples so that they allow humans to simulate the LLM’s decision process on multiple examples. We propose explanation-consistency finetuning (EC-finetuning), a method that adapts LLMs to generate more consistent natural-language explanations on related examples. EC-finetuning involves finetuning LLMs on synthetic data that is carefully constructed to contain consistent explanations. Across a variety of question-answering datasets in various domains, EC-finetuning yields a 10.0% relative explanation consistency improvement on 4 finetuning datasets, and generalizes to 7 out-of-distribution datasets not seen during finetuning (+4.5% relative). We will make our code available for reproducibility.

2023

pdf bib
Explaining Data Patterns in Natural Language with Language Models
Chandan Singh | John X. Morris | Jyoti Aneja | Alexander Rush | Jianfeng Gao
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Large language models (LLMs) have displayed an impressive ability to harness natural language to perform complex tasks. We explore whether we can leverage this ability to find and explain patterns in data. Specifically, given a pre-trained LLM and data examples, we apply interpretable autoprompting (iPrompt) to generate a natural language string explaining the data. iPrompt iteratively generates explanations with an LLM and reranks them based on their performance when used as a prompt. Experiments on a wide range of datasets, from synthetic mathematics to natural language understanding, show that iPrompt can yield meaningful insights by accurately finding dataset explanations that are human-interpretable. Moreover, iPrompt is reasonably efficient, as it does not require access to model gradients and works with relatively small models (e.g. ~6 billion parameters rather than >=100 billion). Finally, experiments with scientific datasets show the potential for iPrompt to aid in scientific discovery.

pdf bib
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
Chandan Singh | John Morris | Alexander Rush | Jianfeng Gao | Yuntian Deng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompting language models (LMs) is the main interface for applying them to new tasks. However, for smaller LMs, prompting provides low accuracy compared to gradient-based fine-tuning. Tree Prompting is an approach to prompting which builds a decision tree of prompts, linking multiple prompt-LM calls together to solve a task. At inference time, each call to the LM is determined by efficiently routing the outcome of the previous call using the tree. Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning. We also show that variants of Tree Prompting allow inspection of a model’s decision-making process.

pdf bib
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.
Search
Co-authors
Fix data