Cho-Jui Hsieh


2024

pdf bib
UNICORN: A Unified Causal Video-Oriented Language-Modeling Framework for Temporal Video-Language Tasks
Yuanhao Xiong | Yixin Nie | Haotian Liu | Boxin Wang | Jun Chen | Rong Jin | Cho-Jui Hsieh | Lorenzo Torresani | Jie Lei
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The great success of large language models has encouraged the development of large multimodal models, with a focus on image-language interaction. Despite promising results in various image-language downstream tasks, it is still challenging and unclear how to extend the capabilities of these models to the more complex video domain, especially when dealing with explicit temporal signals. To address the problem in existing large multimodal models, in this paper we adopt visual instruction tuning to build a unified causal video-oriented language modeling framework, named UNICORN. Specifically, we collect a comprehensive dataset under the instruction-following format, and instruction-tune the model accordingly. Experimental results demonstrate that without customized training objectives and intensive pre-training, UNICORN can achieve comparable or better performance on established temporal video-language tasks including moment retrieval, video paragraph captioning and dense video captioning. Moreover, the instruction-tuned model can be used to automatically annotate internet videos with temporally-aligned captions. Compared to commonly used ASR captions, we show that training on our generated captions improves the performance of video-language models on both zero-shot and fine-tuning settings. Source code can be found at https://github.com/xyh97/UNICORN.

pdf bib
Red Teaming Language Model Detectors with Language Models
Zhouxing Shi | Yihan Wang | Fan Yin | Xiangning Chen | Kai-Wei Chang | Cho-Jui Hsieh
Transactions of the Association for Computational Linguistics, Volume 12

The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness.

pdf bib
Automatic Engineering of Long Prompts
Cho-Jui Hsieh | Si Si | Felix Yu | Inderjit Dhillon
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have demonstrated remarkable capabilities in solving complex open-domain tasks, guided by comprehensive instructions and demonstrations provided in the form of prompts. However, these prompts can be lengthy, often comprising hundreds of lines and thousands of tokens, and their design often requires considerable human effort. Recent research has explored automatic prompt engineering for short prompts, typically consisting of one or a few sentences. However, the automatic design of long prompts remains a challenging problem due to its immense search space. In this paper, we propose an algorithm named Automated Prompt Engineering Xpert (APEX), a novel algorithm that automatically improves long prompts. Leveraging a greedy algorithm with beam-search for efficiency, APEX utilizes search history to significantly enhance the effectiveness of LLM-based mutation in its search process. Our results show that APEX achieves an average of 9.2% accuracy gain on eight tasks in Big Bench Hard and a consistent improvements on GSM8K with various models, highlighting the significance of automating prompt designs to fully harness the capabilities of LLMs.

pdf bib
Defending LLMs against Jailbreaking Attacks via Backtranslation
Yihan Wang | Zhouxing Shi | Andrew Bai | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: ACL 2024

Although many large language models (LLMs) have been trained to refuse harmful requests, they are still vulnerable to jailbreaking attacks which rewrite the original prompt to conceal its harmful intent. In this paper, we propose a new method for defending LLMs against jailbreaking attacks by “backtranslation”. Specifically, given an initial response generated by the target LLM from an input prompt, our backtranslation prompts a language model to infer an input prompt that can lead to the response. The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt, since it is generated based on the LLM’s response and not directly manipulated by the attacker. We then run the target LLM again on the backtranslated prompt, and we refuse the original prompt if the model refuses the backtranslated prompt. We explain that the proposed defense provides several benefits on its effectiveness and efficiency. We empirically demonstrate that our defense significantly outperforms the baselines, in the cases that are hard for the baselines, and our defense also has little impact on the generation quality for benign input prompts. Our implementation is based on our library for LLM jailbreaking defense algorithms at https://github.com/YihanWang617/llm-jailbreaking-defense, and the code for reproducing our experiments is available at https://github.com/YihanWang617/LLM-Jailbreaking-Defense-Backtranslation.

pdf bib
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLMs Jailbreakers
Xirui Li | Ruochen Wang | Minhao Cheng | Tianyi Zhou | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: EMNLP 2024

Safety-aligned Large Language Models (LLMs) are still vulnerable to some manual and automated jailbreak attacks, which adversarially trigger LLMs to output harmful content. However, existing jailbreaking methods usually view a harmful prompt as a whole but they are not effective at reducing LLMs’ attention on combinations of words with malice, which well-aligned LLMs can easily reject. This paper discovers that decomposing a malicious prompt into separated sub-prompts can effectively reduce LLMs’ attention on harmful words by presenting them to LLMs in a fragmented form, thereby addressing these limitations and improving attack effectiveness. We introduce an automatic prompt Decomposition and Reconstruction framework for jailbreaking Attack (DrAttack). DrAttack consists of three key components: (a) ‘Decomposition’ of the original prompt into sub-prompts, (b) ‘Reconstruction’ of these sub-prompts implicitly by In-Context Learning with semantically similar but benign reassembling example, and (c) ‘Synonym Search’ of sub-prompts, aiming to find sub-prompts’ synonyms that maintain the original intent while jailbreaking LLMs. An extensive empirical study across multiple open-source and closed-source LLMs demonstrates that, with fewer queries, DrAttack obtains a substantial gain of success rate on powerful LLMs over prior SOTA attackers. Notably, the success rate of 80% on GPT-4 surpassed previous art by 65%. Code and data are made publicly available at https://turningpoint-ai.github.io/DrAttack/.

pdf bib
Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns?
Kuei-Chun Kao | Ruochen Wang | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models have demonstrates remarkable performance in solving math problems, a hallmark of human intelligence.Despite high success rates on current benchmarks, however, these often feature simple problems with only one or two unknowns, which do not sufficiently challenge their reasoning capacities. This paper introduces a novel benchmark, BeyondX, designed to address these limitations by incorporating problems with multiple unknowns. Recognizing the challenges in proposing multi-unknown problems from scratch, we developed BeyondX using an innovative automated pipeline that progressively increases complexity by expanding the number of unknowns in simpler problems. Empirical study on BeyondX reveals that the performance of existing LLMs, even those fine-tuned specifically on math tasks, significantly decreases as the number of unknowns increases - with a performance drop of up to 70% observed in GPT-4. To tackle these challenges, we propose the Formulate-and-Solve strategy, a generalized prompting approach that effectively handles problems with an arbitrary number of unknowns. Our findings reveal that this strategy not only enhances LLM performance on the BeyondX benchmark but also provides deeper insights into the computational limits of LLMs when faced with more complex mathematical challenges.

pdf bib
MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering
Xiusi Chen | Jyun-Yu Jiang | Wei-Cheng Chang | Cho-Jui Hsieh | Hsiang-Fu Yu | Wei Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advances in few-shot question answering (QA) mostly rely on the power of pre-trained large language models (LLMs) and fine-tuning in specific settings. Although the pre-training stage has already equipped LLMs with powerful reasoning capabilities, LLMs still need to be fine-tuned to adapt to specific domains to achieve the best results. In this paper, we propose to select the most informative data for fine-tuning, thereby improving the efficiency of the fine-tuning process with comparative or even better accuracy on the open-domain QA task. We present MinPrompt, a minimal data augmentation framework for open-domain QA based on an approximate graph algorithm and unsupervised question generation. We transform the raw text into a graph structure to build connections between different factual sentences, then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text. We then generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model. Empirical results on several benchmark datasets and theoretical analysis show that MinPrompt is able to achieve comparable or better results than baselines with a high degree of efficiency, bringing consistent improvements in F-1 scores.

2023

pdf bib
Enhancing Unsupervised Semantic Parsing with Distributed Contextual Representations
Zixuan Ling | Xiaoqing Zheng | Jianhan Xu | Jinshu Lin | Kai-Wei Chang | Cho-Jui Hsieh | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023

We extend a non-parametric Bayesian model of (Titov and Klementiev, 2011) to deal with homonymy and polysemy by leveraging distributed contextual word and phrase representations pre-trained on a large collection of unlabelled texts. Then, unsupervised semantic parsing is performed by decomposing sentences into fragments, clustering the fragments to abstract away syntactic variations of the same meaning, and predicting predicate-argument relations between the fragments. To better model the statistical dependencies between predicates and their arguments, we further conduct a hierarchical Pitman-Yor process. An improved Metropolis-Hastings merge-split sampler is proposed to speed up the mixing and convergence of Markov chains by leveraging pre-trained distributed representations. The experimental results show that the models achieve better accuracy on both question-answering and relation extraction tasks.

2022

pdf bib
Extreme Zero-Shot Learning for Extreme Text Classification
Yuanhao Xiong | Wei-Cheng Chang | Cho-Jui Hsieh | Hsiang-Fu Yu | Inderjit Dhillon
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The eXtreme Multi-label text Classification (XMC) problem concerns finding most relevant labels for an input text instance from a large label set. However, the XMC setup faces two challenges: (1) it is not generalizable to predict unseen labels in dynamic environments, and (2) it requires a large amount of supervised (instance, label) pairs, which can be difficult to obtain for emerging domains. In this paper, we consider a more practical scenario called Extreme Zero-Shot XMC (EZ-XMC), in which no supervision is needed and merely raw text of instances and labels are accessible. Few-Shot XMC (FS-XMC), an extension to EZ-XMC with limited supervision is also investigated. To learn the semantic embeddings of instances and labels with raw text, we propose to pre-train Transformer-based encoders with self-supervised contrastive losses. Specifically, we develop a pre-training method MACLR, which thoroughly leverages the raw text with techniques including Multi-scale Adaptive Clustering, Label Regularization, and self-training with pseudo positive pairs. Experimental results on four public EZ-XMC datasets demonstrate that MACLR achieves superior performance compared to all other leading baseline methods, in particular with approximately 5-10% improvement in precision and recall on average. Moreover, we show that our pre-trained encoder can be further improved on FS-XMC when there are a limited number of ground-truth positive pairs in training. Our code is available at https://github.com/amzn/pecos/tree/mainline/examples/MACLR.

pdf bib
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin | Zhouxing Shi | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations.

pdf bib
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
Fan Yin | Yao Li | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Adversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks and has drawn increasing attention from the Natural Language Processing (NLP) community. Despite the surge of new AED methods, our studies show that existing methods heavily rely on a shortcut to achieve good performance. In other words, current search-based adversarial attacks in NLP stop once model predictions change, and thus most adversarial examples generated by those attacks are located near model decision boundaries. To surpass this shortcut and fairly evaluate AED methods, we propose to test AED methods with Far Boundary (FB) adversarial examples. Existing methods show worse than random guess performance under this scenario. To overcome this limitation, we propose a new technique, ADDMU, adversary detection with data and model uncertainty, which combines two types of uncertainty estimation for both regular and FB adversarial example detection. Our new method outperforms previous methods by 3.6 and 6.0 AUC points under each scenario. Finally, our analysis shows that the two types of uncertainty provided by ADDMU can be leveraged to characterize adversarialexamples and identify the ones that contribute most to model’s robustness in adversarial training.

pdf bib
Towards Adversarially Robust Text Classifiers by Learning to Reweight Clean Examples
Jianhan Xu | Cenyuan Zhang | Xiaoqing Zheng | Linyang Li | Cho-Jui Hsieh | Kai-Wei Chang | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2022

Most of the existing defense methods improve the adversarial robustness by making the models adapt to the training set augmented with some adversarial examples. However, the augmented adversarial examples may not be natural, which might distort the training distribution, resulting in inferior performance both in clean accuracy and adversarial robustness. In this study, we explore the feasibility of introducing a reweighting mechanism to calibrate the training distribution to obtain robust models. We propose to train text classifiers by a sample reweighting method in which the example weights are learned to minimize the loss of a validation set mixed with the clean examples and their adversarial ones in an online learning manner. Through extensive experiments, we show that there exists a reweighting mechanism to make the models more robust against adversarial attacks without the need to craft the adversarial examples for the entire training set.

pdf bib
Improving the Adversarial Robustness of NLP Models by Information Bottleneck
Cenyuan Zhang | Xiang Zhou | Yixin Wan | Xiaoqing Zheng | Kai-Wei Chang | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: ACL 2022

Existing studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.

pdf bib
Weight Perturbation as Defense against Adversarial Word Substitutions
Jianhan Xu | Linyang Li | Jiping Zhang | Xiaoqing Zheng | Kai-Wei Chang | Cho-Jui Hsieh | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

The existence and pervasiveness of textual adversarial examples have raised serious concerns to security-critical applications. Many methods have been developed to defend against adversarial attacks for neural natural language processing (NLP) models.Adversarial training is one of the most successful defense methods by adding some random or intentional perturbations to the original input texts and making the models robust to the perturbed examples.In this study, we explore the feasibility of improving the adversarial robustness of NLP models by performing perturbations in the parameter space rather than the input feature space.The weight perturbation helps to find a better solution (i.e., the values of weights) that minimizes the adversarial loss among other feasible solutions.We found that the weight perturbation can significantly improve the robustness of NLP models when it is combined with the perturbation in the input embedding space, yielding the highest accuracy on both clean and adversarial examples across different datasets.

2021

pdf bib
Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet Neighborhood Ensemble
Yi Zhou | Xiaoqing Zheng | Cho-Jui Hsieh | Kai-Wei Chang | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Although deep neural networks have achieved prominent performance on many NLP tasks, they are vulnerable to adversarial examples. We propose Dirichlet Neighborhood Ensemble (DNE), a randomized method for training a robust model to defense synonym substitution-based attacks. During training, DNE forms virtual sentences by sampling embedding vectors for each word in an input sentence from a convex hull spanned by the word and its synonyms, and it augments them with the training data. In such a way, the model is robust to adversarial attacks while maintaining the performance on the original clean data. DNE is agnostic to the network architectures and scales to large models (e.g., BERT) for NLP applications. Through extensive experimentation, we demonstrate that our method consistently outperforms recently proposed defense methods by a significant margin across different network architectures and multiple data sets.

pdf bib
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation
Chong Zhang | Jieyu Zhao | Huan Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Robustness and counterfactual bias are usually evaluated on a test dataset. However, are these evaluations robust? If the test dataset is perturbed slightly, will the evaluation results keep the same? In this paper, we propose a “double perturbation” framework to uncover model weaknesses beyond the test dataset. The framework first perturbs the test dataset to construct abundant natural sentences similar to the test data, and then diagnoses the prediction change regarding a single-word substitution. We apply this framework to study two perturbation-based approaches that are used to analyze models’ robustness and counterfactual bias in English. (1) For robustness, we focus on synonym substitutions and identify vulnerable examples where prediction can be altered. Our proposed attack attains high success rates (96.0%-99.8%) in finding vulnerable examples on both original and robustly trained CNNs and Transformers. (2) For counterfactual bias, we focus on substituting demographic tokens (e.g., gender, race) and measure the shift of the expected prediction among constructed sentences. Our method is able to reveal the hidden model biases not directly shown in the test dataset. Our code is available at https://github.com/chong-z/nlp-second-order-attack.

pdf bib
On the Transferability of Adversarial Attacks against Neural Text Classifier
Liping Yuan | Xiaoqing Zheng | Yi Zhou | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Deep neural networks are vulnerable to adversarial attacks, where a small perturbation to an input alters the model prediction. In many cases, malicious inputs intentionally crafted for one model can fool another model. In this paper, we present the first study to systematically investigate the transferability of adversarial examples for text classification models and explore how various factors, including network architecture, tokenization scheme, word embedding, and model capacity, affect the transferability of adversarial examples. Based on these studies, we propose a genetic algorithm to find an ensemble of models that can be used to induce adversarial examples to fool almost all existing models. Such adversarial examples reflect the defects of the learning process and the data bias in the training set. Finally, we derive word replacement rules that can be used for model diagnostics from these adversarial examples.

pdf bib
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li | Jianhan Xu | Jiehang Zeng | Linyang Li | Xiaoqing Zheng | Qi Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.

2020

pdf bib
What Does BERT with Vision Look At?
Liunian Harold Li | Mark Yatskar | Da Yin | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pre-trained visually grounded language models such as ViLBERT, LXMERT, and UNITER have achieved significant performance improvement on vision-and-language tasks but what they learn during pre-training remains unclear. In this work, we demonstrate that certain attention heads of a visually grounded language model actively ground elements of language to image regions. Specifically, some heads can map entities to image regions, performing the task known as entity grounding. Some heads can even detect the syntactic relations between non-entity words and image regions, tracking, for example, associations between verbs and regions corresponding to their arguments. We denote this ability as syntactic grounding. We verify grounding both quantitatively and qualitatively, using Flickr30K Entities as a testbed.

pdf bib
Evaluating and Enhancing the Robustness of Neural Network-based Dependency Parsing Models with Adversarial Examples
Xiaoqing Zheng | Jiehang Zeng | Yi Zhou | Cho-Jui Hsieh | Minhao Cheng | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite achieving prominent performance on many important tasks, it has been reported that neural networks are vulnerable to adversarial examples. Previously studies along this line mainly focused on semantic tasks such as sentiment analysis, question answering and reading comprehension. In this study, we show that adversarial examples also exist in dependency parsing: we propose two approaches to study where and how parsers make mistakes by searching over perturbations to existing texts at sentence and phrase levels, and design algorithms to construct such examples in both of the black-box and white-box settings. Our experiments with one of state-of-the-art parsers on the English Penn Treebank (PTB) show that up to 77% of input examples admit adversarial perturbations, and we also show that the robustness of parsing models can be improved by crafting high-quality adversaries and including them in the training stage, while suffering little to no performance drop on the clean input data.

2019

pdf bib
On the Robustness of Self-Attentive Models
Yu-Lun Hsieh | Minhao Cheng | Da-Cheng Juan | Wei Wei | Wen-Lian Hsu | Cho-Jui Hsieh
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This work examines the robustness of self-attentive neural networks against adversarial input perturbations. Specifically, we investigate the attention and feature extraction mechanisms of state-of-the-art recurrent neural networks and self-attentive architectures for sentiment analysis, entailment and machine translation under adversarial attacks. We also propose a novel attack algorithm for generating more natural adversarial examples that could mislead neural models but not humans. Experimental results show that, compared to recurrent neural models, self-attentive models are more robust against adversarial perturbation. In addition, we provide theoretical explanations for their superior robustness to support our claims.

pdf bib
Efficient Contextual Representation Learning With Continuous Outputs
Liunian Harold Li | Patrick H. Chen | Cho-Jui Hsieh | Kai-Wei Chang
Transactions of the Association for Computational Linguistics, Volume 7

Contextual representation models have achieved great success in improving various downstream natural language processing tasks. However, these language-model-based encoders are difficult to train due to their large parameter size and high computational complexity. By carefully examining the training procedure, we observe that the softmax layer, which predicts a distribution of the target word, often induces significant overhead, especially when the vocabulary size is large. Therefore, we revisit the design of the output layer and consider directly predicting the pre-trained embedding of the target word for a given context. When applied to ELMo, the proposed approach achieves a 4-fold speedup and eliminates 80% trainable parameters while achieving competitive performance on downstream tasks. Further analysis shows that the approach maintains the speed advantage under various settings, even when the sentence encoder is scaled up.

pdf bib
Evaluating and Enhancing the Robustness of Dialogue Systems: A Case Study on a Negotiation Agent
Minhao Cheng | Wei Wei | Cho-Jui Hsieh
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent research has demonstrated that goal-oriented dialogue agents trained on large datasets can achieve striking performance when interacting with human users. In real world applications, however, it is important to ensure that the agent performs smoothly interacting with not only regular users but also those malicious ones who would attack the system through interactions in order to achieve goals for their own advantage. In this paper, we develop algorithms to evaluate the robustness of a dialogue agent by carefully designed attacks using adversarial agents. Those attacks are performed in both black-box and white-box settings. Furthermore, we demonstrate that adversarial training using our attacks can significantly improve the robustness of a goal-oriented dialogue system. On a case-study of the negotiation agent developed by (Lewis et al., 2017), our attacks reduced the average advantage of rewards between the attacker and the trained RL-based agent from 2.68 to -5.76 on a scale from -10 to 10 for randomized goals. Moreover, we show that with the adversarial training, we are able to improve the robustness of negotiation agents by 1.5 points on average against all our attacks.

pdf bib
MulCode: A Multiplicative Multi-way Model for Compressing Neural Language Model
Yukun Ma | Patrick H. Chen | Cho-Jui Hsieh
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

It is challenging to deploy deep neural nets on memory-constrained devices due to the explosion of numbers of parameters. Especially, the input embedding layer and Softmax layer usually dominate the memory usage in an RNN-based language model. For example, input embedding and Softmax matrices in IWSLT-2014 German-to-English data set account for more than 80% of the total model parameters. To compress these embedding layers, we propose MulCode, a novel multi-way multiplicative neural compressor. MulCode learns an adaptively created matrix and its multiplicative compositions. Together with a prior weighted loss, Multicode is more effective than the state-of-the-art compression methods. On the IWSLT-2014 machine translation data set, MulCode achieved 17 times compression rate for the embedding and Softmax matrices, and when combined with quantization technique, our method can achieve 41.38 times compression rate with very little loss in performance.

2018

pdf bib
Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang | Hsiang-Fu Yu | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.

pdf bib
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen | Huan Zhang | Pin-Yu Chen | Jinfeng Yi | Cho-Jui Hsieh
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Visual language grounding is widely studied in modern neural image captioning systems, which typically adopts an encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for language caption generation. To study the robustness of language grounding to adversarial perturbations in machine vision and perception, we propose Show-and-Fool, a novel algorithm for crafting adversarial examples in neural image captioning. The proposed algorithm provides two evaluation approaches, which check if we can mislead neural image captioning systems to output some randomly chosen captions or keywords. Our extensive experiments show that our algorithm can successfully craft visually-similar adversarial examples with randomly targeted captions or keywords, and the adversarial examples can be made highly transferable to other image captioning systems. Consequently, our approach leads to new robustness implications of neural image captioning and novel insights in visual language grounding.

2009

pdf bib
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy
Fang-Lan Huang | Cho-Jui Hsieh | Kai-Wei Chang | Chih-Jen Lin
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers