Usama Yaseen


2023

pdf bib
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

2021

pdf bib
Neural Text Classification and Stacked Heterogeneous Embeddings for Named Entity Recognition in SMM4H 2021
Usama Yaseen | Stefan Langer
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

This paper presents our findings from participating in the SMM4H Shared Task 2021. We addressed Named Entity Recognition (NER) and Text Classification. To address NER we explored BiLSTM-CRF with Stacked Heterogeneous embeddings and linguistic features. We investigated various machine learning algorithms (logistic regression, SVM and Neural Networks) to address text classification. Our proposed approaches can be generalized to different languages and we have shown its effectiveness for English and Spanish. Our text classification submissions have achieved competitive performance with F1-score of 0.46 and 0.90 on ADE Classification (Task 1a) and Profession Classification (Task 7a) respectively. In the case of NER, our submissions scored F1-score of 0.50 and 0.82 on ADE Span Detection (Task 1b) and Profession span detection (Task 7b) respectively.

pdf bib
Data Augmentation for Low-Resource Named Entity Recognition Using Backtranslation
Usama Yaseen | Stefan Langer
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

The state of art natural language processing systems relies on sizable training datasets to achieve high performance. Lack of such datasets in the specialized low resource domains lead to suboptimal performance. In this work, we adapt backtranslation to generate high quality and linguistically diverse synthetic data for low-resource named entity recognition. We perform experiments on two datasets from the materials science (MaSciP) and biomedical (S800) domains. The empirical results demonstrate the effectiveness of our proposed augmentation strategy, particularly in the low-resource scenario.

2019

pdf bib
Neural Architectures for Fine-Grained Propaganda Detection in News
Pankaj Gupta | Khushbu Saxena | Usama Yaseen | Thomas Runkler | Hinrich Schütze
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively.

pdf bib
Linguistically Informed Relation Extraction and Neural Architectures for Nested Named Entity Recognition in BioNLP-OST 2019
Pankaj Gupta | Usama Yaseen | Hinrich Schütze
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks

Named Entity Recognition (NER) and Relation Extraction (RE) are essential tools in distilling knowledge from biomedical literature. This paper presents our findings from participating in BioNLP Shared Tasks 2019. We addressed Named Entity Recognition including nested entities extraction, Entity Normalization and Relation Extraction. Our proposed approach of Named Entities can be generalized to different languages and we have shown it’s effectiveness for English and Spanish text. We investigated linguistic features, hybrid loss including ranking and Conditional Random Fields (CRF), multi-task objective and token level ensembling strategy to improve NER. We employed dictionary based fuzzy and semantic search to perform Entity Normalization. Finally, our RE system employed Support Vector Machine (SVM) with linguistic features. Our NER submission (team:MIC-CIS) ranked first in BB-2019 norm+NER task with standard error rate (SER) of 0.7159 and showed competitive performance on PharmaCo NER task with F1-score of 0.8662. Our RE system ranked first in the SeeDev-binary Relation Extraction Task with F1-score of 0.3738.
Search
Co-authors