Self-Consistency, a widely-used decoding strategy, significantly boosts the reasoning capabilities of Large Language Models (LLMs). However, it depends on the plurality voting rule, which focuses on the most frequent answer while overlooking all other minority responses. These inconsistent minority views often illuminate areas of uncertainty within the model’s generation process. To address this limitation, we present Mirror-Consistency, an enhancement of the standard Self-Consistency approach. Our method incorporates a ‘reflective mirror’ into the self-ensemble decoding process and enables LLMs to critically examine inconsistencies among multiple generations. Additionally, just as humans use the mirror to better understand themselves, we propose using Mirror-Consistency to enhance the sample-based confidence calibration methods, which helps to mitigate issues of overconfidence. Our experimental results demonstrate that Mirror-Consistency yields superior performance in both reasoning accuracy and confidence calibration compared to Self-Consistency.
Grammar induction has made significant progress in recent years. However, it is not clear how the application of induced grammar could enhance practical performance in downstream tasks. In this work, we introduce an unsupervised grammar induction method for language understanding and generation. We construct a grammar parser to induce constituency structures and dependency relations, which is simultaneously trained on downstream tasks without additional syntax annotations. The induced grammar features are subsequently incorporated into Transformer as a syntactic mask to guide self-attention. We evaluate and apply our method to multiple machine translation tasks and natural language understanding tasks. Our method demonstrates superior performance compared to the original Transformer and other models enhanced with external parsers. Experimental results indicate that our method is effective in both from-scratch and pre-trained scenarios. Additionally, our research highlights the contribution of explicitly modeling the grammatical structure of texts to neural network models.
Large language models (LLMs) demonstrate great performance in text generation. However, LLMs are still suffering from hallucinations. In this work, we propose an inference-time method, Self-Highlighted Hesitation (SH2), to help LLMs decode more truthfully. SH2 is based on a simple fact rooted in information theory that for an LLM, the tokens predicted with lower probabilities are prone to be more informative than others. Our analysis shows that these low-confidence tokens are more likely to be closely related to factual information, such as nouns, proper nouns, and adjectives. Therefore, we propose to ”highlight” the factual information by selecting key tokens with the lowest probabilities and concatenating them to the original context, thus forcing the model to repeatedly read and hesitate on these tokens before generation. During decoding, we also adopt contrastive decoding to emphasize the difference in output probabilities brought by the hesitation. Experimental results demonstrate that our SH2, requiring no additional data or models, can effectively help LLMs elicit factual knowledge and distinguish hallucinated contexts by themselves. Significant and consistent improvements are achieved by SH2 for LLaMA-7b, LLaMA2-7b and Mistral-7b on various hallucination tasks.
Diffusion models exhibit promising capacity for generating high-quality text. However, owing to the curved nature of generation path, they necessitate traversing numerous steps to guarantee the text quality. In this paper, we propose an efficient model FMSeq, which utilizes flow matching to straighten the generation path, thereby enabling fast sampling for diffusion-based seq2seq text generation. Specifically, we construct transport flow only on the target sequences to adapt the diffusion-based model with flow matching. Furthermore, we explore different settings and identify target-parameterization, self-conditioning and time-difference as three effective techniques to improve the generation quality under a few steps. Experiments on four popular tasks demonstrate that FMSeq generates texts of comparable quality to the SOTA diffusion-based DiffuSeq in just 10 steps, achieving a 200-fold speedup.
While large language models (LLMs) excel in various natural language processing tasks, their huge size and the inaccessibility of parameters present challenges for practical deployment. Previous studies try to distill task-specific ability from LLMs to smaller models, using data synthesis and chain-of-thought (CoT) fine-tuning. However, synthetic CoT data often contains faulty reasoning, which deteriorates the quality of distillation, especially in reasoning capabilities. In this work, we propose Program-aided Distillation (PaD), which introduces reasoning programs to suppress the errors in distilled data, and thus achieves better distillation quality for reasoning tasks. In PaD, we utilize the reasoning program to substitute the CoT, allowing automated error checking of synthetic data. Further, through error injecting and further training, the small distilling model could iteratively self-refine the reasoning. Moreover, we conduct a step-wise beam search by step-by-step verifying to acquire more exact reasoning chains. We evaluate PaD on arithmetic reasoning, symbolic reasoning, and general ability.Experimental results demonstrate that smaller models using PaD can not only outperform certain LLMs (e.g., LLaMA-1 13B) but also achieve strong improvement over baselines with a significantly smaller scale of parameters and data. The source code is publicly available athttps://github.com/Xuekai-Zhu/pad.
Event Extraction (EE) is widely used in the Chinese financial field to provide valuable structured information. However, there are two key challenges for Chinese financial EE in application scenarios. First, events need to be extracted from raw texts, which sets it apart from previous works like the Automatic Content Extraction (ACE) EE task, where EE is treated as a classification problem given the entity spans. Second, recognizing financial entities can be laborious, as they may involve multiple elements. In this paper, we introduce CFTE, a novel task for Chinese Financial Text-to-Event extraction, which directly extracts financial events from raw texts. We further present FINEED, a Chinese FINancial Event Extraction Dataset, and an efficient MAtrix-ChunKing method called MACK, designed for the extraction of financial events from raw texts. Specifically, FINEED is manually annotated with rich linguistic features. We propose a novel two-dimensional annotation method for FINEED, which can visualize the interactions among text components. Our MACK method is fault-tolerant by preserving the tag frequency distribution when identifying financial entities. We conduct extensive experiments and the results verify the effectiveness of our MACK method.
Graph-to-text (G2T) generation and text-to-graph (T2G) triple extraction are two essential tasks for knowledge graphs. Existing unsupervised approaches become suitable candidates for jointly learning the two tasks due to their avoidance of using graph-text parallel data. However, they adopt multiple complex modules and still require entity information or relation type for training. To this end, we propose INFINITY, a simple yet effective unsupervised method with a unified pretrained language model that does not introduce external annotation tools or additional parallel information. It achieves fully unsupervised graph-text mutual conversion for the first time. Specifically, INFINITY treats both G2T and T2G as a bidirectional sequence generation task by fine-tuning only one pretrained seq2seq model. A novel back-translation-based framework is then designed to generate synthetic parallel data automatically. Besides, we investigate the impact of graph linearization and introduce the structure-aware fine-tuning strategy to alleviate possible performance deterioration via retaining structural information in graph sequences. As a fully unsupervised framework, INFINITY is empirically verified to outperform state-of-the-art baselines for G2T and T2G tasks. Additionally, we also devise a new training setting called cross learning for low-resource unsupervised information extraction.
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer’s inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. Our code will be publicly available at https://github.com/LUMIA-Group/FourierTransformer
Humans can systematically generalize to novel compositions of existing concepts. Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity, leading to a pessimistic view and a lack of attention to optimistic results. We revisit this controversial topic from the perspective of meaningful learning, an exceptional capability of humans to learn novel concepts by connecting them with known ones. We reassess the compositional skills of sequence-to-sequence models conditioned on the semantic links between new and old concepts. Our observations suggest that models can successfully one-shot generalize to novel concepts and compositions through semantic linking, either inductively or deductively. We demonstrate that prior knowledge plays a key role as well. In addition to synthetic tests, we further conduct proof-of-concept experiments in machine translation and semantic parsing, showing the benefits of meaningful learning in applications. We hope our positive findings will encourage excavating modern neural networks’ potential in systematic generalization through more advanced learning schemes.
Training Transformer-based models demands a large amount of data, while obtaining aligned and labelled data in multimodality is rather cost-demanding, especially for audio-visual speech recognition (AVSR). Thus it makes a lot of sense to make use of unlabelled unimodal data. On the other side, although the effectiveness of large-scale self-supervised learning is well established in both audio and visual modalities, how to integrate those pre-trained models into a multimodal scenario remains underexplored. In this work, we successfully leverage unimodal self-supervised learning to promote the multimodal AVSR. In particular, audio and visual front-ends are trained on large-scale unimodal datasets, then we integrate components of both front-ends into a larger multimodal framework which learns to recognize parallel audio-visual data into characters through a combination of CTC and seq2seq decoding. We show that both components inherited from unimodal self-supervised learning cooperate well, resulting in that the multimodal framework yields competitive results through fine-tuning. Our model is experimentally validated on both word-level and sentence-level tasks. Especially, even without an external language model, our proposed model raises the state-of-the-art performances on the widely accepted Lip Reading Sentences 2 (LRS2) dataset by a large margin, with a relative improvement of 30%.
Transformer architecture has become the de-facto model for many machine learning tasks from natural language processing and computer vision. As such, improving its computational efficiency becomes paramount. One of the major computational inefficiency of Transformer based models is that they spend the identical amount of computation throughout all layers. Prior works have proposed to augment the Transformer model with the capability of skimming tokens to improve its computational efficiency. However, they suffer from not having effectual and end-to-end optimization of the discrete skimming predictor. To address the above limitations, we propose the Transkimmer architecture, which learns to identify hidden state tokens that are not required by each layer. The skimmed tokens are then forwarded directly to the final output, thus reducing the computation of the successive layers. The key idea in Transkimmer is to add a parameterized predictor before each layer that learns to make the skimming decision. We also propose to adopt reparameterization trick and add skim loss for the end-to-end training of Transkimmer. Transkimmer achieves 10.97x average speedup on GLUE benchmark compared with vanilla BERT-base baseline with less than 1% accuracy degradation.
Relational structures such as schema linking and schema encoding have been validated as a key component to qualitatively translating natural language into SQL queries. However, introducing these structural relations comes with prices: they often result in a specialized model structure, which largely prohibits using large pretrained models in text-to-SQL. To address this problem, we propose RASAT: a Transformer seq2seq architecture augmented with relation-aware self-attention that could leverage a variety of relational structures while inheriting the pretrained parameters from the T5 model effectively. Our model can incorporate almost all types of existing relations in the literature, and in addition, we propose introducing co-reference relations for the multi-turn scenario. Experimental results on three widely used text-to-SQL datasets, covering both single-turn and multi-turn scenarios, have shown that RASAT could achieve competitive results in all three benchmarks, achieving state-of-the-art execution accuracy (75.5% EX on Spider, 52.6% IEX on SParC, and 37.4% IEX on CoSQL).
Text editing, such as grammatical error correction, arises naturally from imperfect textual data. Recent works frame text editing as a multi-round sequence tagging task, where operations – such as insertion and substitution – are represented as a sequence of tags. While achieving good results, this encoding is limited in flexibility as all actions are bound to token-level tags. In this work, we reformulate text editing as an imitation game using behavioral cloning. Specifically, we convert conventional sequence-to-sequence data into state-to-action demonstrations, where the action space can be as flexible as needed. Instead of generating the actions one at a time, we introduce a dual decoders structure to parallel the decoding while retaining the dependencies between action tokens, coupled with trajectory augmentation to alleviate the distribution shift that imitation learning often suffers. In experiments on a suite of Arithmetic Equation benchmarks, our model consistently outperforms the autoregressive baselines in terms of performance, efficiency, and robustness. We hope our findings will shed light on future studies in reinforcement learning applying sequence-level action generation to natural language processing.
Recent works have revealed that Transformers are implicitly learning the syntactic information in its lower layers from data, albeit is highly dependent on the quality and scale of the training data. However, learning syntactic information from data is not necessary if we can leverage an external syntactic parser, which provides better parsing quality with well-defined syntactic structures. This could potentially improve Transformer’s performance and sample efficiency. In this work, we propose a syntax-guided localized self-attention for Transformer that allows directly incorporating grammar structures from an external constituency parser. It prohibits the attention mechanism to overweight the grammatically distant tokens over close ones. Experimental results show that our model could consistently improve translation performance on a variety of machine translation datasets, ranging from small to large dataset sizes, and with different source languages.
MultiWOZ (Budzianowski et al., 2018) is one of the most popular multi-domain taskoriented dialog datasets, containing 10K+ annotated dialogs covering eight domains. It has been widely accepted as a benchmark for various dialog tasks, e.g., dialog state tracking (DST), natural language generation (NLG) and end-to-end (E2E) dialog modeling. In this work, we identify an overlooked issue with dialog state annotation inconsistencies in the dataset, where a slot type is tagged inconsistently across similar dialogs leading to confusion for DST modeling. We propose an automated correction for this issue, which is present in 70% of the dialogs. Additionally, we notice that there is significant entity bias in the dataset (e.g., “cambridge” appears in 50% of the destination cities in the train domain). The entity bias can potentially lead to named entity memorization in generative models, which may go unnoticed as the test set suffers from a similar entity bias as well. We release a new test set with all entities replaced with unseen entities. Finally, we benchmark joint goal accuracy (JGA) of the state-of-theart DST baselines on these modified versions of the data. Our experiments show that the annotation inconsistency corrections lead to 7-10% improvement in JGA. On the other hand, we observe a 29% drop in JGA when models are evaluated on the new test set with unseen entities.
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally efficiently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
Humans observe and interact with the world to acquire knowledge. However, most existing machine reading comprehension (MRC) tasks miss the interactive, information-seeking component of comprehension. Such tasks present models with static documents that contain all necessary information, usually concentrated in a single short substring. Thus, models can achieve strong performance through simple word- and phrase-based pattern matching. We address this problem by formulating a novel text-based question answering task: Question Answering with Interactive Text (QAit). In QAit, an agent must interact with a partially observable text-based environment to gather information required to answer questions. QAit poses questions about the existence, location, and attributes of objects found in the environment. The data is built using a text-based game generator that defines the underlying dynamics of interaction with the environment. We propose and evaluate a set of baseline models for the QAit task that includes deep reinforcement learning agents. Experiments show that the task presents a major challenge for machine reading systems, while humans solve it with relative ease.
In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for each split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurrent network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.