Robin Schmidt


2023

pdf bib
Learning Language-Specific Layers for Multilingual Machine Translation
Telmo Pires | Robin Schmidt | Yi-Hsiu Liao | Stephan Peitz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g., avoiding losing gender and formality information when translating through English).On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase model capacity, while keeping the amount of computation and the number of parameters used in the forward pass constant. The key idea is to have some layers of the encoder be source or target language-specific, while keeping the remaining layers shared. We study the best way to place these layers using a neural architecture search inspired approach, and achieve an improvement of 1.3 chrF (1.5 spBLEU) points over not using LSLs on a separate decoder architecture, and 1.9 chrF (2.2 spBLEU) on a shared decoder one.

pdf bib
State Spaces Aren’t Enough: Machine Translation Needs Attention
Ali Vardasbi | Telmo Pessoa Pires | Robin Schmidt | Stephan Peitz
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

Structured State Spaces for Sequences (S4) is a recently proposed sequence model with successful applications in various tasks, e.g. vision, language modelling, and audio. Thanks to its mathematical formulation, it compresses its input to a single hidden state, and is able to capture long range dependencies while avoiding the need for an attention mechanism. In this work, we apply S4 to Machine Translation (MT), and evaluate several encoder-decoder variants on WMT’14 and WMT’16. In contrast with the success in language modeling, we find that S4 lags behind the Transformer by approximately 4 BLEU points, and that it counter-intuitively struggles with long sentences. Finally, we show that this gap is caused by S4’s inability to summarize the full source sentence in a single hidden state, and show that we can close the gap by introducing an attention mechanism.

pdf bib
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

2022

pdf bib
Non-Autoregressive Neural Machine Translation: A Call for Clarity
Robin Schmidt | Telmo Pires | Stephan Peitz | Jonas Lööf
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Non-autoregressive approaches aim to improve the inference speed of translation models by only requiring a single forward pass to generate the output sequence instead of iteratively producing each predicted token. Consequently, their translation quality still tends to be inferior to their autoregressive counterparts due to several issues involving output token interdependence. In this work, we take a step back and revisit several techniques that have been proposed for improving non-autoregressive translation models and compare their combined translation quality and speed implications under third-party testing environments. We provide novel insights for establishing strong baselines using length prediction or CTC-based architecture variants and contribute standardized BLEU, chrF++, and TER scores using sacreBLEU on four translation tasks, which crucially have been missing as inconsistencies in the use of tokenized BLEU lead to deviations of up to 1.7 BLEU points. Our open-sourced code is integrated into fairseq for reproducibility.
Search
Co-authors
Fix data