Shuo Wang


2024

pdf bib
Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages
Yuanchi Zhang | Yile Wang | Zijun Liu | Shuo Wang | Xiaolong Wang | Peng Li | Maosong Sun | Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While large language models (LLMs) have been pre-trained on multilingual corpora, their performance still lags behind in most languages compared to a few resource-rich languages. One common approach to mitigate this issue is to translate training data from resource-rich languages into other languages and then continue training. However, using the data obtained solely relying on translation while ignoring the original capabilities of LLMs across languages is not always effective, which we show will limit the performance of cross-lingual knowledge transfer. In this work, we propose SDRRL, a method based on Self-Distillation from Resource-Rich Languages that effectively improve multilingual performance by leveraging the internal capabilities of LLMs on resource-rich languages. We evaluate on different LLMs (LLaMA-2 and SeaLLM) and source languages (English and French) across various comprehension and generation tasks, experimental results demonstrate that SDRRL can significantly enhance multilingual capabilities while minimizing the impact on original performance in resource-rich languages.

pdf bib
UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset
Haoyu Wang | Shuo Wang | Yukun Yan | Xujia Wang | Zhiyu Yang | Yuzhuang Xu | Zhenghao Liu | Liner Yang | Ning Ding | Xu Han | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual abilities.In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset.Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. Firstly, we introduce a knowledge-grounded data augmentation approach to elicit more language-specific knowledge of LLMs, improving their ability to serve users from different countries. Moreover, we find modern LLMs possess strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic supervised fine-tuning (SFT) data without any performance degradation, making multilingual SFT more efficient.The resulting UltraLink dataset comprises approximately 1 million samples across five languages (i.e., En, Zh, Ru, Fr, Es), and the proposed data construction method can be easily extended to other languages.UltraLink-LM, which is trained on the UltraLink dataset, outperforms several representative baselines across many tasks.

pdf bib
LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative Tasks
Hanqing Wang | Bowen Ping | Shuo Wang | Xu Han | Yun Chen | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain, where different learned additional modules represent diverse skills. Combining existing LoRAs to address new tasks can enhance the reusability of learned LoRAs, particularly beneficial for tasks with limited annotated data. Most prior works on LoRA combination primarily rely on task-level weights for each involved LoRA, making different examples and tokens share the same LoRA weights. However, in generative tasks, different tokens may necessitate diverse skills to manage. Taking the Chinese math task as an example, understanding the problem description may depend more on the Chinese LoRA, while the calculation part may rely more on the math LoRA. To this end, we propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs. The weights at each step are determined by a fusion gate with extremely few parameters, which can be learned with only 200 training examples. Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights. This underscores the necessity of introducing dynamic fusion weights for LoRA combination.

pdf bib
Bench: Extending Long Context Evaluation Beyond 100K Tokens
Xinrong Zhang | Yingfa Chen | Shengding Hu | Zihang Xu | Junhao Chen | Moo Hao | Xu Han | Zhen Thai | Shuo Wang | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose , the first LLM benchmark featuring an average data length surpassing 100K tokens. comprises synthetic and realistic tasks spanning diverse domains in English and Chinese. The tasks in are designed to require an understanding of long dependencies in contexts and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. Based on , we evaluate several state-of-the-art LLMs tailored for processing long contexts. The experimental results indicate that existing long-context LLMs still require significant advancements to process 100K+ contexts effectively. Furthermore, we present three intriguing analyses regarding the behavior of LLMs processing long context. Our code and data is released.

pdf bib
INTERVENOR: Prompting the Coding Ability of Large Language Models with the Interactive Chain of Repair
Hanbin Wang | Zhenghao Liu | Shuo Wang | Ganqu Cui | Ning Ding | Zhiyuan Liu | Ge Yu
Findings of the Association for Computational Linguistics: ACL 2024

This paper introduces INTERVENOR (INTERactiVE chaiN Of Repair), a system designed to emulate the interactive code repair processes observed in humans, encompassing both code diagnosis and code repair. INTERVENOR prompts Large Language Models (LLMs) to play distinct roles during the code repair process, functioning as both a Code Learner and a Code Teacher. Specifically, the Code Learner is tasked with adhering to instructions to generate or repair code, while the Code Teacher is responsible for crafting a Chain-of-Repair (CoR) to serve as guidance for the Code Learner. During generating the CoR, the Code Teacher needs to check the generated codes from Code Learner and reassess how to address code bugs based on error feedback received from compilers. Experimental results demonstrate that INTERVENOR surpasses baseline models, exhibiting improvements of approximately 18% and 4.3% over GPT-3.5 in code generation and code translation tasks, respectively. Our further analyses show that CoR is effective to illuminate the reasons behind bugs and outline solution plans in natural language. With the feedback of code compilers, INTERVENOR can accurately identify syntax errors and assertion errors and provide precise instructions to repair codes. All data and codes are available at [https://github.com/NEUIR/INTERVENOR](https://github.com/NEUIR/INTERVENOR).

pdf bib
MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization
Zhiyu Yang | Zihan Zhou | Shuo Wang | Xin Cong | Xu Han | Yukun Yan | Zhenghao Liu | Zhixing Tan | Pengyuan Liu | Dong Yu | Zhiyuan Liu | Xiaodong Shi | Maosong Sun
Findings of the Association for Computational Linguistics: ACL 2024

Scientific data visualization plays a crucial role in research by enabling the direct display of complex information and assisting researchers in identifying implicit patterns. Despite its importance, the use of Large Language Models (LLMs) for scientific data visualization remains rather unexplored. In this study, we introduce MatPlotAgent, an efficient model-agnostic LLM agent framework designed to automate scientific data visualization tasks. Leveraging the capabilities of both code LLMs and multi-modal LLMs, MatPlotAgent consists of three core modules: query understanding, code generation with iterative debugging, and a visual feedback mechanism for error correction. To address the lack of benchmarks in this field, we present MatPlotBench, a high-quality benchmark consisting of 100 human-verified test cases. Additionally, we introduce a scoring approach that utilizes GPT-4V for automatic evaluation. Experimental results demonstrate that MatPlotAgent can improve the performance of various LLMs, including both commercial and open-source models. Furthermore, the proposed evaluation method shows a strong correlation with human-annotated scores.

pdf bib
MCTS: A Multi-Reference Chinese Text Simplification Dataset
Ruining Chong | Luming Lu | Liner Yang | Jinran Nie | Zhenghao Liu | Shuo Wang | Shuhan Zhou | Yaoxin Li | Erhong Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Text simplification aims to make the text easier to understand by applying rewriting transformations. There has been very little research on Chinese text simplification for a long time. The lack of generic evaluation data is an essential reason for this phenomenon. In this paper, we introduce MCTS, a multi-reference Chinese text simplification dataset. We describe the annotation process of the dataset and provide a detailed analysis. Furthermore, we evaluate the performance of several unsupervised methods and advanced large language models. We additionally provide Chinese text simplification parallel data that can be used for training, acquired by utilizing machine translation and English text simplification. We hope to build a basic understanding of Chinese text simplification through the foundational work and provide references for future research. All of the code and data are released at https://github.com/blcuicall/mcts/.

pdf bib
Pluggable Neural Machine Translation Models via Memory-augmented Adapters
Yuzhuang Xu | Shuo Wang | Peng Li | Xuebo Liu | Xiaolong Wang | Weidong Liu | Yang Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Although neural machine translation (NMT) models perform well in the general domain, it remains rather challenging to control their generation behavior to satisfy the requirement of different users. Given the expensive training cost and the data scarcity challenge of learning a new model from scratch for each user requirement, we propose a memory-augmented adapter to steer pretrained NMT models in a pluggable manner. Specifically, we construct a multi-granular memory based on the user-provided text samples and propose a new adapter architecture to combine the model representations and the retrieved results. We also propose a training strategy using memory dropout to reduce spurious dependencies between the NMT model and the memory. We validate our approach on both style- and domain-specific experiments and the results indicate that our method can outperform several representative pluggable baselines.

2023

pdf bib
Explainable Recommendation with Personalized Review Retrieval and Aspect Learning
Hao Cheng | Shuo Wang | Wensheng Lu | Wei Zhang | Mingyang Zhou | Kezhong Lu | Hao Liao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users’ preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor).

pdf bib
TemplateGEC: Improving Grammatical Error Correction with Detection Template
Yinghao Li | Xuebo Liu | Shuo Wang | Peiyuan Gong | Derek F. Wong | Yang Gao | Heyan Huang | Min Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Grammatical error correction (GEC) can be divided into sequence-to-edit (Seq2Edit) and sequence-to-sequence (Seq2Seq) frameworks, both of which have their pros and cons. To utilize the strengths and make up for the shortcomings of these frameworks, this paper proposes a novel method, TemplateGEC, which capitalizes on the capabilities of both Seq2Edit and Seq2Seq frameworks in error detection and correction respectively. TemplateGEC utilizes the detection labels from a Seq2Edit model, to construct the template as the input. A Seq2Seq model is employed to enforce consistency between the predictions of different templates by utilizing consistency learning. Experimental results on the Chinese NLPCC18, English BEA19 and CoNLL14 benchmarks show the effectiveness and robustness of TemplateGEC.Further analysis reveals the potential of our method in performing human-in-the-loop GEC. Source code and scripts are available at https://github.com/li-aolong/TemplateGEC.

pdf bib
Transferable and Efficient: Unifying Dynamic Multi-Domain Product Categorization
Shansan Gong | Zelin Zhou | Shuo Wang | Fengjiao Chen | Xiujie Song | Xuezhi Cao | Yunsen Xian | Kenny Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

As e-commerce platforms develop different business lines, a special but challenging product categorization scenario emerges, where there are multiple domain-specific category taxonomies and each of them evolves dynamically over time. In order to unify the categorization process and ensure efficiency, we propose a two-stage taxonomy-agnostic framework that relies solely on calculating the semantic relatedness between product titles and category names in the vector space. To further enhance domain transferability and better exploit cross-domain data, we design two plug-in modules: a heuristic mapping scorer and a pretrained contrastive ranking module with the help of meta concepts, which represent keyword knowledge shared across domains. Comprehensive offline experiments show that our method outperforms strong baselineson three dynamic multi-domain product categorization (DMPC) tasks,and online experiments reconfirm its efficacy with a5% increase on seasonal purchase revenue. Related datasets will be released.

2022

pdf bib
MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better Translators
Zhixing Tan | Xiangwen Zhang | Shuo Wang | Yang Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompting has recently been shown as a promising approach for applying pre-trained language models to perform downstream tasks. We present Multi-Stage Prompting, a simple and automatic approach for leveraging pre-trained language models to translation tasks. To better mitigate the discrepancy between pre-training and translation, MSP divides the translation process via pre-trained language models into three separate stages: the encoding stage, the re-encoding stage, and the decoding stage. During each stage, we independently apply different continuous prompts for allowing pre-trained language models better shift to translation tasks. We conduct extensive experiments on three translation tasks. Experiments show that our method can significantly improve the translation performance of pre-trained language models.

pdf bib
Integrating Vectorized Lexical Constraints for Neural Machine Translation
Shuo Wang | Zhixing Tan | Yang Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Lexically constrained neural machine translation (NMT), which controls the generation of NMT models with pre-specified constraints, is important in many practical scenarios. Due to the representation gap between discrete constraints and continuous vectors in NMT models, most existing works choose to construct synthetic data or modify the decoding algorithm to impose lexical constraints, treating the NMT model as a black box. In this work, we propose to open this black box by directly integrating the constraints into NMT models. Specifically, we vectorize source and target constraints into continuous keys and values, which can be utilized by the attention modules of NMT models. The proposed integration method is based on the assumption that the correspondence between keys and values in attention modules is naturally suitable for modeling constraint pairs. Experimental results show that our method consistently outperforms several representative baselines on four language pairs, demonstrating the superiority of integrating vectorized lexical constraints.

pdf bib
A Template-based Method for Constrained Neural Machine Translation
Shuo Wang | Peng Li | Zhixing Tan | Zhaopeng Tu | Maosong Sun | Yang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Machine translation systems are expected to cope with various types of constraints in many practical scenarios. While neural machine translation (NMT) has achieved strong performance in unconstrained cases, it is non-trivial to impose pre-specified constraints into the translation process of NMT models. Although many approaches have been proposed to address this issue, most existing methods can not satisfy the following three desiderata at the same time: (1) high translation quality, (2) high match accuracy, and (3) low latency. In this work, we propose a template-based method that can yield results with high translation quality and match accuracy and the inference speed of our method is comparable with unconstrained NMT models. Our basic idea is to rearrange the generation of constrained and unconstrained tokens through a template. Our method does not require any changes in the model architecture and the decoding algorithm. Experimental results show that the proposed template-based approach can outperform several representative baselines in both lexically and structurally constrained translation tasks.

2021

pdf bib
On the Language Coverage Bias for Neural Machine Translation
Shuo Wang | Zhaopeng Tu | Zhixing Tan | Shuming Shi | Maosong Sun | Yang Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
On the Inference Calibration of Neural Machine Translation
Shuo Wang | Zhaopeng Tu | Shuming Shi | Yang Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Confidence calibration, which aims to make model predictions equal to the true correctness measures, is important for neural machine translation (NMT) because it is able to offer useful indicators of translation errors in the generated output. While prior studies have shown that NMT models trained with label smoothing are well-calibrated on the ground-truth training data, we find that miscalibration still remains a severe challenge for NMT during inference due to the discrepancy between training and inference. By carefully designing experiments on three language pairs, our work provides in-depth analyses of the correlation between calibration and translation performance as well as linguistic properties of miscalibration and reports a number of interesting findings that might help humans better analyze, understand and improve NMT models. Based on these observations, we further propose a new graduated label smoothing method that can improve both inference calibration and translation performance.

pdf bib
THUMT: An Open-Source Toolkit for Neural Machine Translation
Zhixing Tan | Jiacheng Zhang | Xuancheng Huang | Gang Chen | Shuo Wang | Maosong Sun | Huanbo Luan | Yang Liu
Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

2019

pdf bib
Improving Back-Translation with Uncertainty-based Confidence Estimation
Shuo Wang | Yang Liu | Chao Wang | Huanbo Luan | Maosong Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While back-translation is simple and effective in exploiting abundant monolingual corpora to improve low-resource neural machine translation (NMT), the synthetic bilingual corpora generated by NMT models trained on limited authentic bilingual data are inevitably noisy. In this work, we propose to quantify the confidence of NMT model predictions based on model uncertainty. With word- and sentence-level confidence measures based on uncertainty, it is possible for back-translation to better cope with noise in synthetic bilingual corpora. Experiments on Chinese-English and English-German translation tasks show that uncertainty-based confidence estimation significantly improves the performance of back-translation.

2018

pdf bib
ScholarGraph:a Chinese Knowledge Graph of Chinese Scholars
Shuo Wang | Zehui Hao | Xiaofeng Meng | Qiuyue Wang
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)