Tushar Khot


2024

pdf bib
SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories
Ben Bogin | Kejuan Yang | Shashank Gupta | Kyle Richardson | Erin Bransom | Peter Clark | Ashish Sabharwal | Tushar Khot
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be a boon to the research community, helping researchers validate, understand, and extend prior work. To advance towards this goal, we introduce SUPER, the first benchmark designed to evaluate the capability of LLMs in setting up and executing tasks from research repositories. SUPER aims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories. Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub-problems derived from the expert set that focus on specific challenges (e.g., configuring a trainer), and 602 automatically generated problems for larger-scale development. We introduce various evaluation measures to assess both task success and progress, utilizing gold solutions when available or approximations otherwise. We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios. This illustrates the challenge of this task, and suggests that SUPER can serve as a valuable resource for the community to make and measure progress.

pdf bib
ADaPT: As-Needed Decomposition and Planning with Language Models
Archiki Prasad | Alexander Koller | Mareike Hartmann | Peter Clark | Ashish Sabharwal | Mohit Bansal | Tushar Khot
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) are increasingly being used for interactive decision-making tasks requiring planning and adapting to the environment. Recent works employ LLMs-as-agents in broadly two ways: iteratively determining the next action (iterative executors) or generating plans and executing sub-tasks using LLMs (plan-and-execute). However, these methods struggle with task complexity, as the inability to execute any sub-task may lead to task failure. To address these shortcomings, we introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT), an approach that explicitly plans and decomposes complex sub-tasks as-needed, i.e., when the LLM is unable to execute them. ADaPT recursively decomposes sub-tasks to adapt to both task complexity and LLM capability. Our results demonstrate that ADaPT substantially outperforms established strong baselines, achieving success rates up to 28.3% higher in ALFWorld, 27% in WebShop, and 33% in TextCraft – a novel compositional dataset that we introduce. Through extensive analysis, we illustrate the importance of multilevel decomposition and establish that ADaPT dynamically adjusts to the capabilities of the executor LLM as well as to task complexity.

pdf bib
OLMo: Accelerating the Science of Language Models
Dirk Groeneveld | Iz Beltagy | Evan Walsh | Akshita Bhagia | Rodney Kinney | Oyvind Tafjord | Ananya Jha | Hamish Ivison | Ian Magnusson | Yizhong Wang | Shane Arora | David Atkinson | Russell Authur | Khyathi Chandu | Arman Cohan | Jennifer Dumas | Yanai Elazar | Yuling Gu | Jack Hessel | Tushar Khot | William Merrill | Jacob Morrison | Niklas Muennighoff | Aakanksha Naik | Crystal Nam | Matthew Peters | Valentina Pyatkin | Abhilasha Ravichander | Dustin Schwenk | Saurabh Shah | William Smith | Emma Strubell | Nishant Subramani | Mitchell Wortsman | Pradeep Dasigi | Nathan Lambert | Kyle Richardson | Luke Zettlemoyer | Jesse Dodge | Kyle Lo | Luca Soldaini | Noah Smith | Hannaneh Hajishirzi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, we have built OLMo, a competitive, truly Open Language Model, to enable the scientific study of language models. Unlike most prior efforts that have only released model weights and inference code, we release OLMo alongside open training data and training and evaluation code. We hope this release will empower the open research community and inspire a new wave of innovation.

pdf bib
AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents
Harsh Trivedi | Tushar Khot | Mareike Hartmann | Ruskin Manku | Vinty Dong | Edward Li | Shashank Gupta | Ashish Sabharwal | Niranjan Balasubramanian
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Autonomous agents that address day-to-day digital tasks (e.g., ordering groceries for a household), must not only operate multiple apps (e.g., notes, messaging, shopping app) via APIs, but also generate rich code with complex control flow in an iterative manner based on their interaction with the environment. However, existing benchmarks for tool use are inadequate, as they only cover tasks that require a simple sequence of API calls. To remedy this gap, we built AppWorld Engine, a high-quality execution environment (60K lines of code) of 9 day-to-day apps operable via 457 APIs and populated with realistic digital activities simulating the lives of ~100 fictitious users. We then created AppWorld Benchmark (40K lines of code), a suite of 750 natural, diverse, and challenging autonomous agent tasks requiring rich and interactive code generation. It supports robust programmatic evaluation with state-based unit tests, allowing for different ways of completing a task while also checking for unexpected changes, i.e., collateral damage. The state-of-the-art LLM, GPT4O, solves only ~49% of our ‘normal’ tasks and ~30% of ‘challenge’ tasks, while other models solve at least 16% fewer. This highlights the benchmark’s difficulty and AppWorld’s potential to push the frontiers of interactive coding agents.

2023

pdf bib
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompting-based large language models (LLMs) are surprisingly powerful at generating natural language reasoning steps or Chains-of-Thoughts (CoT) for multi-step question answering (QA). They struggle, however, when the necessary knowledge is either unavailable to the LLM or not up-to-date within its parameters. While using the question to retrieve relevant text from an external knowledge source helps LLMs, we observe that this one-step retrieve-and-read approach is insufficient for multi-step QA. Here, what to retrieve depends on what has already been derived, which in turn may depend on what was previously retrieved. To address this, we propose IRCoT, a new approach for multi-step QA that interleaves retrieval with steps (sentences) in a CoT, guiding the retrieval with CoT and in turn using retrieved results to improve CoT. Using IRCoT with GPT3 substantially improves retrieval (up to 21 points) as well as downstream QA (up to 15 points) on four datasets: HotpotQA, 2WikiMultihopQA, MuSiQue, and IIRC. We observe similar substantial gains in out-of-distribution (OOD) settings as well as with much smaller models such as Flan-T5-large without additional training. IRCoT reduces model hallucination, resulting in factually more accurate CoT reasoning.

pdf bib
The Tail Wagging the Dog: Dataset Construction Biases of Social Bias Benchmarks
Nikil Selvam | Sunipa Dev | Daniel Khashabi | Tushar Khot | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model? In this work, we study this question by contrasting social biases with non-social biases that stem from choices made during dataset construction (which might not even be discernible to the human eye). To do so, we empirically simulate various alternative constructions for a given benchmark based on seemingly innocuous modifications (such as paraphrasing or random-sampling) that maintain the essence of their social bias. On two well-known social bias benchmarks (Winogender and BiasNLI), we observe that these shallow modifications have a surprising effect on the resulting degree of bias across various models and consequently the relative ordering of these models when ranked by measured bias. We hope these troubling observations motivate more robust measures of social biases.

2022

pdf bib
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Daniel Khashabi | Xinxi Lyu | Sewon Min | Lianhui Qin | Kyle Richardson | Sean Welleck | Hannaneh Hajishirzi | Tushar Khot | Ashish Sabharwal | Sameer Singh | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a “wayward” behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.

pdf bib
Retrieval Data Augmentation Informed by Downstream Question Answering Performance
James Ferguson | Hannaneh Hajishirzi | Pradeep Dasigi | Tushar Khot
Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER)

Training retrieval models to fetch contexts for Question Answering (QA) over large corpora requires labeling relevant passages in those corpora. Since obtaining exhaustive manual annotations of all relevant passages is not feasible, prior work uses text overlap heuristics to find passages that are likely to contain the answer, but this is not feasible when the task requires deeper reasoning and answers are not extractable spans (e.g.: multi-hop, discrete reasoning). We address this issue by identifying relevant passages based on whether they are useful for a trained QA model to arrive at the correct answers, and develop a search process guided by the QA model’s loss. Our experiments show that this approach enables identifying relevant context for unseen data greater than 90% of the time on the IIRC dataset and generalizes better to the end QA task than those trained on just the gold retrieval data on IIRC and QASC datasets.

pdf bib
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid common reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.

pdf bib
Hey AI, Can You Solve Complex Tasks by Talking to Agents?
Tushar Khot | Kyle Richardson | Daniel Khashabi | Ashish Sabharwal
Findings of the Association for Computational Linguistics: ACL 2022

Training giant models from scratch for each complex task is resource- and data-inefficient. To help develop models that can leverage existing systems, we propose a new challenge: Learning to solve complex tasks by communicating with existing agents (or models) in natural language. We design a synthetic benchmark, CommaQA, with three complex reasoning tasks (explicit, implicit, numeric) designed to be solved by communicating with existing QA agents. For instance, using text and table QA agents to answer questions such as “Who had the longest javelin throw from USA?”. We show that black-box models struggle to learn this task from scratch (accuracy under 50%) even with access to each agent’s knowledge and gold facts supervision. In contrast, models that learn to communicate with agents outperform black-box models, reaching scores of 100% when given gold decomposition supervision. However, we show that the challenge of learning to solve complex tasks by communicating with existing agents without relying on any auxiliary supervision or data still remains highly elusive. We will release CommaQA, along with a compositional generalization test split, to advance research in this direction.

pdf bib
MuSiQue: Multihop Questions via Single-hop Question Composition
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Transactions of the Association for Computational Linguistics, Volume 10

Multihop reasoning remains an elusive goal as existing multihop benchmarks are known to be largely solvable via shortcuts. Can we create a question answering (QA) dataset that, by construction, requires proper multihop reasoning? To this end, we introduce a bottom–up approach that systematically selects composable pairs of single-hop questions that are connected, that is, where one reasoning step critically relies on information from another. This bottom–up methodology lets us explore a vast space of questions and add stringent filters as well as other mechanisms targeting connected reasoning. It provides fine-grained control over the construction process and the properties of the resulting k-hop questions. We use this methodology to create MuSiQue-Ans, a new multihop QA dataset with 25K 2–4 hop questions. Relative to existing datasets, MuSiQue-Ans is more difficult overall (3× increase in human–machine gap), and harder to cheat via disconnected reasoning (e.g., a single-hop model has a 30-point drop in F1). We further add unanswerable contrast questions to produce a more stringent dataset, MuSiQue-Full. We hope our datasets will help the NLP community develop models that perform genuine multihop reasoning.1

2021

pdf bib
ReadOnce Transformers: Reusable Representations of Text for Transformers
Shih-Ting Lin | Ashish Sabharwal | Tushar Khot
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We present ReadOnce Transformers, an approach to convert a transformer-based model into one that can build an information-capturing, task-independent, and compressed representation of text. The resulting representation is reusable across different examples and tasks, thereby requiring a document shared across many examples or tasks to only be read once. This leads to faster training and evaluation of models. Additionally, we extend standard text-to-text transformer models to Representation+Text-to-text models, and evaluate on multiple downstream tasks: multi-hop QA, abstractive QA, and long-document summarization. Our one-time computed representation results in a 2x-5x speedup compared to standard text-to-text models, while the compression also allows existing language models to handle longer documents without the need for designing new pre-trained models.

pdf bib
Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies
Mor Geva | Daniel Khashabi | Elad Segal | Tushar Khot | Dan Roth | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 9

A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of ∼ 66%.

pdf bib
Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models
Tushar Khot | Daniel Khashabi | Kyle Richardson | Peter Clark | Ashish Sabharwal
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a general framework called Text Modular Networks(TMNs) for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models. To ensure solvability of simpler tasks, TMNs learn the textual input-output behavior (i.e., language) of existing models through their datasets. This differs from prior decomposition-based approaches which, besides being designed specifically for each complex task, produce decompositions independent of existing sub-models. Specifically, we focus on Question Answering (QA) and show how to train a next-question generator to sequentially produce sub-questions targeting appropriate sub-models, without additional human annotation. These sub-questions and answers provide a faithful natural language explanation of the model’s reasoning. We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator. Our experiments show that ModularQA is more versatile than existing explainable systems for DROP and HotpotQA datasets, is more robust than state-of-the-art blackbox (uninterpretable) systems, and generates more understandable and trustworthy explanations compared to prior work.

pdf bib
Temporal Reasoning on Implicit Events from Distant Supervision
Ben Zhou | Kyle Richardson | Qiang Ning | Tushar Khot | Ashish Sabharwal | Dan Roth
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose TRACIE, a novel temporal reasoning dataset that evaluates the degree to which systems understand implicit events—events that are not mentioned explicitly in natural language text but can be inferred from it. This introduces a new challenge in temporal reasoning research, where prior work has focused on explicitly mentioned events. Human readers can infer implicit events via commonsense reasoning, resulting in a more comprehensive understanding of the situation and, consequently, better reasoning about time. We find, however, that state-of-the-art models struggle when predicting temporal relationships between implicit and explicit events. To address this, we propose a neuro-symbolic temporal reasoning model, SymTime, which exploits distant supervision signals from large-scale text and uses temporal rules to combine start times and durations to infer end times. SymTime outperforms strong baseline systems on TRACIE by 5%, and by 11% in a zero prior knowledge training setting. Our approach also generalizes to other temporal reasoning tasks, as evidenced by a gain of 1%-9% on MATRES, an explicit event benchmark.

pdf bib
Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?
Jieyu Zhao | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
GooAQ: Open Question Answering with Diverse Answer Types
Daniel Khashabi | Amos Ng | Tushar Khot | Ashish Sabharwal | Hannaneh Hajishirzi | Chris Callison-Burch
Findings of the Association for Computational Linguistics: EMNLP 2021

While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Google’s responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmark T5 models on GooAQ and observe that: (a) in line with recent work, LM’s strong performance on GooAQ’s short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as ‘how’ and ‘why’ questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.

2020

pdf bib
UNIFIEDQA: Crossing Format Boundaries with a Single QA System
Daniel Khashabi | Sewon Min | Tushar Khot | Ashish Sabharwal | Oyvind Tafjord | Peter Clark | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UNIFIEDQA, that performs well across 19 QA datasets spanning 4 diverse formats. UNIFIEDQA performs on par with 8 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UNIFIEDQA performs surprisingly well, showing strong generalization from its outof-format training data. Finally, simply finetuning this pre trained QA model into specialized models results in a new state of the art on 10 factoid and commonsense question answering datasets, establishing UNIFIEDQA as a strong starting point for building QA systems.

pdf bib
UNQOVERing Stereotyping Biases via Underspecified Questions
Tao Li | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Vivek Srikumar
Findings of the Association for Computational Linguistics: EMNLP 2020

While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.

pdf bib
More Bang for Your Buck: Natural Perturbation for Robust Question Answering
Daniel Khashabi | Tushar Khot | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep learning models for linguistic tasks require large training datasets, which are expensive to create. As an alternative to the traditional approach of creating new instances by repeating the process of creating one instance, we propose doing so by first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Such perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. Further, they help address the issue that even models achieving human-level scores on NLP datasets are known to be considerably sensitive to small changes in input. To evaluate the idea, we consider a recent question-answering dataset (BOOLQ) and study our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create (cost ratio under 60%), it is more effective to use them for training BOOLQ models: such models exhibit 9% higher robustness and 4.5% stronger generalization, while retaining performance on the original BOOLQ dataset.

pdf bib
IIRC: A Dataset of Incomplete Information Reading Comprehension Questions
James Ferguson | Matt Gardner | Hannaneh Hajishirzi | Tushar Khot | Pradeep Dasigi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Humans often have to read multiple documents to address their information needs. However, most existing reading comprehension (RC) tasks only focus on questions for which the contexts provide all the information required to answer them, thus not evaluating a system’s performance at identifying a potential lack of sufficient information and locating sources for that information. To fill this gap, we present a dataset, IIRC, with more than 13K questions over paragraphs from English Wikipedia that provide only partial information to answer them, with the missing information occurring in one or more linked documents. The questions were written by crowd workers who did not have access to any of the linked documents, leading to questions that have little lexical overlap with the contexts where the answers appear. This process also gave many questions without answers, and those that require discrete reasoning, increasing the difficulty of the task. We follow recent modeling work on various reading comprehension datasets to construct a baseline model for this dataset, finding that it achieves 31.1% F1 on this task, while estimated human performance is 88.4%. The dataset, code for the baseline system, and a leaderboard can be found at https://allennlp.org/iirc.

pdf bib
A Simple Yet Strong Pipeline for HotpotQA
Dirk Groeneveld | Tushar Khot | Mausam | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design complexity? Our results suggest that the answer may be no, because even our simple pipeline based on BERT, named , performs surprisingly well. Specifically, on HotpotQA, Quark outperforms these models on both question answering and support identification (and achieves performance very close to a RoBERTa model). Our pipeline has three steps: 1) use BERT to identify potentially relevant sentences independently of each other; 2) feed the set of selected sentences as context into a standard BERT span prediction model to choose an answer; and 3) use the sentence selection model, now with the chosen answer, to produce supporting sentences. The strong performance of Quark resurfaces the importance of carefully exploring simple model designs before using popular benchmarks to justify the value of complex techniques.

pdf bib
Is Multihop QA in DiRe Condition? Measuring and Reducing Disconnected Reasoning
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Has there been real progress in multi-hop question-answering? Models often exploit dataset artifacts to produce correct answers, without connecting information across multiple supporting facts. This limits our ability to measure true progress and defeats the purpose of building multi-hop QA datasets. We make three contributions towards addressing this. First, we formalize such undesirable behavior as disconnected reasoning across subsets of supporting facts. This allows developing a model-agnostic probe for measuring how much any model can cheat via disconnected reasoning. Second, using a notion of contrastive support sufficiency, we introduce an automatic transformation of existing datasets that reduces the amount of disconnected reasoning. Third, our experiments suggest that there hasn’t been much progress in multi-hop QA in the reading comprehension setting. For a recent large-scale model (XLNet), we show that only 18 points out of its answer F1 score of 72 on HotpotQA are obtained through multifact reasoning, roughly the same as that of a simpler RNN baseline. Our transformation substantially reduces disconnected reasoning (19 points in answer F1). It is complementary to adversarial approaches, yielding further reductions in conjunction.

2019

pdf bib
Exploiting Explicit Paths for Multi-hop Reading Comprehension
Souvik Kundu | Tushar Khot | Ashish Sabharwal | Peter Clark
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a novel, path-based reasoning approach for the multi-hop reading comprehension task where a system needs to combine facts from multiple passages to answer a question. Although inspired by multi-hop reasoning over knowledge graphs, our proposed approach operates directly over unstructured text. It generates potential paths through passages and scores them without any direct path supervision. The proposed model, named PathNet, attempts to extract implicit relations from text through entity pair representations, and compose them to encode each path. To capture additional context, PathNet also composes the passage representations along each path to compute a passage-based representation. Unlike previous approaches, our model is then able to explain its reasoning via these explicit paths through the passages. We show that our approach outperforms prior models on the multi-hop Wikihop dataset, and also can be generalized to apply to the OpenBookQA dataset, matching state-of-the-art performance.

pdf bib
Repurposing Entailment for Multi-Hop Question Answering Tasks
Harsh Trivedi | Heeyoung Kwon | Tushar Khot | Ashish Sabharwal | Niranjan Balasubramanian
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs. We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on a large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models.

pdf bib
What’s Missing: A Knowledge Gap Guided Approach for Multi-hop Question Answering
Tushar Khot | Ashish Sabharwal | Peter Clark
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-hop textual question answering requires combining information from multiple sentences. We focus on a natural setting where, unlike typical reading comprehension, only partial information is provided with each question. The model must retrieve and use additional knowledge to correctly answer the question. To tackle this challenge, we develop a novel approach that explicitly identifies the knowledge gap between a key span in the provided knowledge and the answer choices. The model, GapQA, learns to fill this gap by determining the relationship between the span and an answer choice, based on retrieved knowledge targeting this gap. We propose jointly training a model to simultaneously fill this knowledge gap and compose it with the provided partial knowledge. On the OpenBookQA dataset, given partial knowledge, explicitly identifying what’s missing substantially outperforms previous approaches.

2018

pdf bib
AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
Dongyeop Kang | Tushar Khot | Ashish Sabharwal | Eduard Hovy
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We consider the problem of learning textual entailment models with limited supervision (5K-10K training examples), and present two complementary approaches for it. First, we propose knowledge-guided adversarial example generators for incorporating large lexical resources in entailment models via only a handful of rule templates. Second, to make the entailment model—a discriminator—more robust, we propose the first GAN-style approach for training it using a natural language example generator that iteratively adjusts to the discriminator’s weaknesses. We demonstrate effectiveness using two entailment datasets, where the proposed methods increase accuracy by 4.7% on SciTail and by 2.8% on a 1% sub-sample of SNLI. Notably, even a single hand-written rule, negate, improves the accuracy of negation examples in SNLI by 6.1%.

pdf bib
Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering
Todor Mihaylov | Peter Clark | Tushar Khot | Ashish Sabharwal
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1326 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic—in the context of common knowledge—and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance.

pdf bib
Bridging Knowledge Gaps in Neural Entailment via Symbolic Models
Dongyeop Kang | Tushar Khot | Ashish Sabharwal | Peter Clark
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Most textual entailment models focus on lexical gaps between the premise text and the hypothesis, but rarely on knowledge gaps. We focus on filling these knowledge gaps in the Science Entailment task, by leveraging an external structured knowledge base (KB) of science facts. Our new architecture combines standard neural entailment models with a knowledge lookup module. To facilitate this lookup, we propose a fact-level decomposition of the hypothesis, and verifying the resulting sub-facts against both the textual premise and the structured KB. Our model, NSNet, learns to aggregate predictions from these heterogeneous data formats. On the SciTail dataset, NSNet outperforms a simpler combination of the two predictions by 3% and the base entailment model by 5%.

2017

pdf bib
Learning What is Essential in Questions
Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Dan Roth
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

Question answering (QA) systems are easily distracted by irrelevant or redundant words in questions, especially when faced with long or multi-sentence questions in difficult domains. This paper introduces and studies the notion of essential question terms with the goal of improving such QA solvers. We illustrate the importance of essential question terms by showing that humans’ ability to answer questions drops significantly when essential terms are eliminated from questions. We then develop a classifier that reliably (90% mean average precision) identifies and ranks essential terms in questions. Finally, we use the classifier to demonstrate that the notion of question term essentiality allows state-of-the-art QA solver for elementary-level science questions to make better and more informed decisions,improving performance by up to 5%.We also introduce a new dataset of over 2,200 crowd-sourced essential terms annotated science questions.

pdf bib
Answering Complex Questions Using Open Information Extraction
Tushar Khot | Ashish Sabharwal | Peter Clark
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

While there has been substantial progress in factoid question-answering (QA), answering complex questions remains challenging, typically requiring both a large body of knowledge and inference techniques. Open Information Extraction (Open IE) provides a way to generate semi-structured knowledge for QA, but to date such knowledge has only been used to answer simple questions with retrieval-based methods. We overcome this limitation by presenting a method for reasoning with Open IE knowledge, allowing more complex questions to be handled. Using a recently proposed support graph optimization framework for QA, we develop a new inference model for Open IE, in particular one that can work effectively with multiple short facts, noise, and the relational structure of tuples. Our model significantly outperforms a state-of-the-art structured solver on complex questions of varying difficulty, while also removing the reliance on manually curated knowledge.

2015

pdf bib
Exploring Markov Logic Networks for Question Answering
Tushar Khot | Niranjan Balasubramanian | Eric Gribkoff | Ashish Sabharwal | Peter Clark | Oren Etzioni
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2009

pdf bib
How Creative is Your Writing?
Xiaojin Zhu | Zhiting Xu | Tushar Khot
Proceedings of the Workshop on Computational Approaches to Linguistic Creativity