Ranking is a fundamental problem in search, however, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain QA, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively.
Interactive story reading is common in early childhood education, where teachers expect to teach both language skills and real-world knowledge beyond the story. While many story reading systems have been developed for this activity, they often fail to infuse real-world knowledge into the conversation. This limitation can be attributed to the existing question-answering (QA) datasets used for children’s education, upon which the systems are built, failing to capture the nuances of how education experts think when conducting interactive story reading activities. To bridge this gap, we design an annotation framework, empowered by existing knowledge graph to capture experts’ annotations and thinking process, and leverage this framework to construct StorySparkQA dataset, which comprises 5, 868 expert-annotated QA pairs with real-world knowledge. We conduct automated and human expert evaluations across various QA pair generation settings to demonstrate that our StorySparkQA can effectively support models in generating QA pairs that target real-world knowledge beyond story content. StorySparkQA is available at https://huggingface.co/datasets/NEU-HAI/StorySparkQA.
Large Language Models (LLMs) are increasingly integrated into diverse applications. The rapid evolution of LLMs presents opportunities for developers to enhance applications continuously. However, this constant adaptation can also lead to performance regressions during model migrations. While several interactive tools have been proposed to streamline the complexity of prompt engineering, few address the specific requirements of regression testing for LLM Migrations. To bridge this gap, we introduce RETAIN (REgression Testing guided LLM migrAtIoN), a tool designed explicitly for regression testing in LLM Migrations. RETAIN comprises two key components: an interactive interface tailored to regression testing needs during LLM migrations, and an error discovery module that facilitates understanding of differences in model behaviors. The error discovery module generates textual descriptions of various errors or differences between model outputs, providing actionable insights for prompt refinement. Our automatic evaluation and empirical user studies demonstrate that RETAIN, when compared to manual evaluation, enabled participants to identify twice as many errors, facilitated experimentation with 75% more prompts, and achieves 12% higher metric scores in a given time frame.
The rapid evolution of Large Language Models (LLMs) and conversational assistants necessitates dynamic, scalable, and configurable conversational datasets for training and evaluation.These datasets must accommodate diverse user interaction modes, including text and voice, each presenting unique modeling challenges. Knowledge Graphs (KGs), with their structured and evolving nature, offer an ideal foundation for current and precise knowledge.Although human-curated KG-based conversational datasets exist, they struggle to keep pace with the rapidly changing user information needs.We present ConvKGYarn, a scalable method for generating up-to-date and configurable conversational KGQA datasets. Qualitative psychometric analyses demonstrate ConvKGYarn’s effectiveness in producing high-quality data comparable to popular conversational KGQA datasets across various metrics.ConvKGYarn excels in adhering to human interaction configurations and operating at a significantly larger scale.We showcase ConvKGYarn’s utility by testing LLMs on diverse conversations — exploring model behavior on conversational KGQA sets with different configurations grounded in the same KG fact set.Our results highlight the ability of ConvKGYarn to improve KGQA foundations and evaluate parametric knowledge of LLMs, thus offering a robust solution to the constantly evolving landscape of conversational assistants.
Prompt engineering is an iterative procedure that often requires extensive manual effort to formulate suitable instructions for effectively directing large language models (LLMs) in specific tasks. Incorporating few-shot examples is a vital and effective approach to provide LLMs with precise instructions, leading to improved LLM performance. Nonetheless, identifying the most informative demonstrations for LLMs is labor-intensive, frequently entailing sifting through an extensive search space. In this demonstration, we showcase a human-in-the-loop tool called ool (Active Prompt Engineering) designed for refining prompts through active learning. Drawing inspiration from active learning, ool iteratively selects the most ambiguous examples for human feedback, which will be transformed into few-shot examples within the prompt.
The development of conversational AI assistants is an iterative process with many components involved. As such, the evaluation and continual improvement of these assistants is a complex and multifaceted problem. This paper introduces the challenges in evaluating and improving a generative AI assistant for enterprise that is under active development and how we address these challenges. We also share preliminary results and discuss lessons learned.
Entity disambiguation (ED), which links the mentions of ambiguous entities to their referent entities in a knowledge base, serves as a core component in entity linking (EL). Existing generative approaches demonstrate improved accuracy compared to classification approaches under the standardized ZELDA benchmark. Nevertheless, generative approaches suffer from the need for large-scale pre-training and inefficient generation. Most importantly, entity descriptions, which could contain crucial information to distinguish similar entities from each other, are often overlooked.We propose an encoder-decoder model to disambiguate entities with more detailed entity descriptions. Given text and candidate entities, the encoder learns interactions between the text and each candidate entity, producing representations for each entity candidate. The decoder then fuses the representations of entity candidates together and selects the correct entity.Our experiments, conducted on various entity disambiguation benchmarks, demonstrate the strong and robust performance of this model, particularly +1.5% in the ZELDA benchmark compared with GENRE. Furthermore, we integrate this approach into the retrieval/reader framework and observe +1.5% improvements in end-to-end entity linking in the GERBIL benchmark compared with EntQA.
Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains. However, keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete. It is thus essential to design effective methods to both update obsolete knowledge and induce new knowledge into LLMs. Existing locate-and-edit knowledge editing (KE) method suffers from two limitations. First, the post-edit LLMs by such methods generally have poor capability in answering complex queries that require multi-hop reasoning. Second, the long run-time of such locate-and-edit methods to perform knowledge edits make it infeasible for large scale KE in practice. In this paper, we explore Parameter-Efficient Fine-Tuning (PEFT) techniques as an alternative for KE. We curate a more comprehensive temporal KE dataset with both knowledge update and knowledge injection examples for KE performance benchmarking. We further probe the effect of fine-tuning on a range of layers in an LLM for the multi-hop QA task. We find that PEFT performs better than locate-and-edit techniques for time-sensitive knowledge edits.
Datasets that pair Knowledge Graphs (KG) and text together (KG-T) can be used to train forward and reverse neural models that generate text from KG and vice versa. However models trained on datasets where KG and text pairs are not equivalent can suffer from more hallucination and poorer recall. In this paper, we verify this empirically by generating datasets with different levels of noise and find that noisier datasets do indeed lead to more hallucination. We argue that the ability of forward and reverse models trained on a dataset to cyclically regenerate source KG or text is a proxy for the equivalence between the KG and the text in the dataset. Using cyclic evaluation we find that manually created WebNLG is much better than automatically created TeKGen and T-REx. Informed by these observations, we construct a new, improved dataset called LAGRANGE using heuristics meant to improve equivalence between KG and text and show the impact of each of the heuristics on cyclic evaluation. We also construct two synthetic datasets using large language models (LLMs), and observe that these are conducive to models that perform significantly well on cyclic generation of text, but less so on cyclic generation of KGs, probably because of a lack of a consistent underlying ontology.
This tutorial reviews the design of common meaning representations, SoTA models for predicting meaning representations, and the applications of meaning representations in a wide range of downstream NLP tasks and real-world applications. Reporting by a diverse team of NLP researchers from academia and industry with extensive experience in designing, building and using meaning representations, our tutorial has three components: (1) an introduction to common meaning representations, including basic concepts and design challenges; (2) a review of SoTA methods on building models for meaning representations; and (3) an overview of applications of meaning representations in downstream NLP tasks and real-world applications. We propose a cutting-edge, full-day tutorial for all stakeholders in the AI community, including NLP researchers, domain-specific practitioners, and students
Open Information Extraction (OpenIE) has been used in the pipelines of various NLP tasks. Unfortunately, there is no clear consensus on which models to use in which tasks. Muddying things further is the lack of comparisons that take differing training sets into account. In this paper, we present an application-focused empirical survey of neural OpenIE models, training sets, and benchmarks in an effort to help users choose the most suitable OpenIE systems for their applications. We find that the different assumptions made by different models and datasets have a statistically significant effect on performance, making it important to choose the most appropriate model for one’s applications. We demonstrate the applicability of our recommendations on a downstream Complex QA application.
Semantic role labeling (SRL) identifies the predicate-argument structure in a sentence. This task is usually accomplished in four steps: predicate identification, predicate sense disambiguation, argument identification, and argument classification. Errors introduced at one step propagate to later steps. Unfortunately, the existing SRL evaluation scripts do not consider the full effect of this error propagation aspect. They either evaluate arguments independent of predicate sense (CoNLL09) or do not evaluate predicate sense at all (CoNLL05), yielding an inaccurate SRL model performance on the argument classification task. In this paper, we address key practical issues with existing evaluation scripts and propose a more strict SRL evaluation metric PriMeSRL. We observe that by employing PriMeSRL, the quality evaluation of all SoTA SRL models drops significantly, and their relative rankings also change. We also show that PriMeSRLsuccessfully penalizes actual failures in SoTA SRL models.
Real-world domain experts (e.g., doctors) rarely annotate only a decision label in their day-to-day workflow without providing explanations. Yet, existing low-resource learning techniques, such as Active Learning (AL), that aim to support human annotators mostly focus on the label while neglecting the natural language explanation of a data point. This work proposes a novel AL architecture to support experts’ real-world need for label and explanation annotations in low-resource scenarios. Our AL architecture leverages an explanation-generation model to produce explanations guided by human explanations, a prediction model that utilizes generated explanations toward prediction faithfully, and a novel data diversity-based AL sampling strategy that benefits from the explanation annotations. Automated and human evaluations demonstrate the effectiveness of incorporating explanations into AL sampling and the improved human annotation efficiency and trustworthiness with our AL architecture. Additional ablation studies illustrate the potential of our AL architecture for transfer learning, generalizability, and integration with large language models (LLMs). While LLMs exhibit exceptional explanation-generation capabilities for relatively simple tasks, their effectiveness in complex real-world tasks warrants further in-depth study.
Recent work in Natural Language Processing and Computer Vision has been using textual information – e.g., entity names and descriptions – available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Completion (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.
Detecting factual errors of textual information, whether generated by large language models (LLM) or curated by humans, is crucial for making informed decisions. LLMs’ inability to attribute their claims to external knowledge and their tendency to hallucinate makes it difficult to rely on their responses. Humans, too, are prone to factual errors in their writing. Since manual detection and correction of factual er- rors is labor-intensive, developing an automatic approach can greatly reduce human effort. We present a prototype tool that automatically extracts factual claims from text, gathers evidence from external knowledge sources, evaluates the factuality of each claim, and suggests revisions for identified errors using the collected evidence. Initial empirical evaluation on fact error detection (77-85% F1) shows the potential of our tool.
Argument classification is at the core of Semantic Role Labeling. Given a sentence and the predicate, a semantic role label is assigned to each argument of the predicate. While semantic roles come with meaningful definitions, existing work has treated them as symbolic. Learning symbolic labels usually requires ample training data, which is frequently unavailable due to the cost of annotation. We instead propose to retrieve and leverage the definitions of these labels from the annotation guidelines. For example, the verb predicate “work” has arguments defined as “worker”, “job”, “employer”, etc. Our model achieves state-of-the-art performance on the CoNLL09 dataset injected with label definitions given the predicate senses. The performance improvement is even more pronounced in low-resource settings when training data is scarce.
This tutorial reviews the design of common meaning representations, SoTA models for predicting meaning representations, and the applications of meaning representations in a wide range of downstream NLP tasks and real-world applications. Reporting by a diverse team of NLP researchers from academia and industry with extensive experience in designing, building and using meaning representations, our tutorial has three components: (1) an introduction to common meaning representations, including basic concepts and design challenges; (2) a review of SoTA methods on building models for meaning representations; and (3) an overview of applications of meaning representations in downstream NLP tasks and real-world applications. We will also present qualitative comparisons of common meaning representations and a quantitative study on how their differences impact model performance. Finally, we will share best practices in choosing the right meaning representation for downstream tasks.
Identifying and integrating missing facts is a crucial task for knowledge graph completion to ensure robustness towards downstream applications such as question answering. Adding new facts for a knowledge graph in real world system often involves human verification effort, where candidate facts are verified for accuracy by human annotators. This process is labor-intensive, time-consuming, and inefficient since only a small number of missing facts can be identified. This paper proposes a simple but effective human-in-the-loop framework for fact collection that searches for a diverse set of highly relevant candidate facts for human annotation. Empirical results presented in this work demonstrate that the proposed solution leads to both improvements in i) the quality of the candidate facts as well as ii) the ability of discovering more facts to grow the knowledge graph without requiring additional human effort.
We propose a probabilistic approach to select a subset of a target domain representative keywords from a candidate set, contrasting with a context domain. Such a task is crucial for many downstream tasks in natural language processing. To contrast the target domain and the context domain, we adapt the two-component mixture model concept to generate a distribution of candidate keywords. It provides more importance to the distinctive keywords of the target domain than common keywords contrasting with the context domain. To support the representativeness of the selected keywords towards the target domain, we introduce an optimization algorithm for selecting the subset from the generated candidate distribution. We have shown that the optimization algorithm can be efficiently implemented with a near-optimal approximation guarantee. Finally, extensive experiments on multiple domains demonstrate the superiority of our approach over other baselines for the tasks of keyword summary generation and trending keywords selection.
Accurate prediction of the stock price volatility, the rate at which the price of a stock increases or decreases over a particular period, is an important problem in finance. Inaccurate prediction of stock price volatility might lead to investment risk and financial loss, while accurate prediction might generate significant returns for investors. Several studies investigated stock price volatility prediction in a regression task by using the transcripts of earning calls (quarterly conference calls held by public companies) with Natural Language Processing (NLP) techniques. Existing studies use the entire transcript and this degrades the performance due to noise caused by irrelevant information that might not have a significant impact on stock price volatility. In order to overcome these limitations, by considering stock price volatility prediction as a classification task, we explore several denoising approaches, ranging from general-purpose approaches to techniques specific to finance to remove the noise, and leverage AutoML systems that enable auto-exploration of a wide variety of models. Our preliminary findings indicate that domain-specific denoising approaches provide better results than general-purpose approaches, moreover AutoML systems provide promising results.
Semantic role labeling (SRL) represents the meaning of a sentence in the form of predicate-argument structures. Such shallow semantic analysis is helpful in a wide range of downstream NLP tasks and real-world applications. As treebanks enabled the development of powerful syntactic parsers, the accurate predicate-argument analysis demands training data in the form of propbanks. Unfortunately, most languages simply do not have corresponding propbanks due to the high cost required to construct such resources. To overcome such challenges, Universal Proposition Bank 1.0 (UP1.0) was released in 2017, with high-quality propbank data generated via a two-stage method exploiting monolingual SRL and multilingual parallel data. In this paper, we introduce Universal Proposition Bank 2.0 (UP2.0), with significant enhancements over UP1.0: (1) propbanks with higher quality by using a state-of-the-art monolingual SRL and improved auto-generation of annotations; (2) expanded language coverage (from 7 to 9 languages); (3) span annotation for the decoupling of syntactic analysis; and (4) Gold data for a subset of the languages. We also share our experimental results that confirm the significant quality improvements of the generated propbanks. In addition, we present a comprehensive experimental evaluation on how different implementation choices impact the quality of the resulting data. We release these resources to the research community and hope to encourage more research on cross-lingual SRL.
Entity linking (EL) is the task of disambiguating mentions appearing in text by linking them to entities in a knowledge graph, a crucial task for text understanding, question answering or conversational systems. In the special case of short-text EL, which poses additional challenges due to limited context, prior approaches have reached good performance by employing heuristics-based methods or purely neural approaches. Here, we take a different, neuro-symbolic approach that combines the advantages of using interpretable rules based on first-order logic with the performance of neural learning. Even though constrained to use rules, we show that we reach competitive or better performance with SoTA black-box neural approaches. Furthermore, our framework has the benefits of extensibility and transferability. We show that we can easily blend existing rule templates given by a human expert, with multiple types of features (priors, BERT encodings, box embeddings, etc), and even with scores resulting from previous EL methods, thus improving on such methods. As an example of improvement, on the LC-QuAD-1.0 dataset, we show more than 3% increase in F1 score relative to previous SoTA. Finally, we show that the inductive bias offered by using logic results in a set of learned rules that transfers from one dataset to another, sometimes without finetuning, while still having high accuracy.
Due to its great power in modeling non-Euclidean data like graphs or manifolds, deep learning on graph techniques (i.e., Graph Neural Networks (GNNs)) have opened a new door to solving challenging graph-related NLP problems. There has seen a surge of interests in applying deep learning on graph techniques to NLP, and has achieved considerable success in many NLP tasks, ranging from classification tasks like sentence classification, semantic role labeling and relation extraction, to generation tasks like machine translation, question generation and summarization. Despite these successes, deep learning on graphs for NLP still face many challenges, including automatically transforming original text sequence data into highly graph-structured data, and effectively modeling complex data that involves mapping between graph-based inputs and other highly structured output data such as sequences, trees, and graph data with multi-types in both nodes and edges. This tutorial will cover relevant and interesting topics on applying deep learning on graph techniques to NLP, including automatic graph construction for NLP, graph representation learning for NLP, advanced GNN based models (e.g., graph2seq, graph2tree, and graph2graph) for NLP, and the applications of GNNs in various NLP tasks (e.g., machine translation, natural language generation, information extraction and semantic parsing). In addition, hands-on demonstration sessions will be included to help the audience gain practical experience on applying GNNs to solve challenging NLP problems using our recently developed open source library – Graph4NLP, the first library for researchers and practitioners for easy use of GNNs for various NLP tasks.
Contracts are arguably the most important type of business documents. Despite their significance in business, legal contract review largely remains an arduous, expensive and manual process. In this paper, we describe TECUS: a commercial system designed and deployed for contract understanding and used by a wide range of enterprise users for the past few years. We reflect on the challenges and design decisions when building TECUS. We also summarize the data science life cycle of TECUS and share lessons learned.
Cross-lingual text classification (CLTC) is a challenging task made even harder still due to the lack of labeled data in low-resource languages. In this paper, we propose zero-shot instance-weighting, a general model-agnostic zero-shot learning framework for improving CLTC by leveraging source instance weighting. It adds a module on top of pre-trained language models for similarity computation of instance weights, thus aligning each source instance to the target language. During training, the framework utilizes gradient descent that is weighted by instance weights to update parameters. We evaluate this framework over seven target languages on three fundamental tasks and show its effectiveness and extensibility, by improving on F1 score up to 4% in single-source transfer and 8% in multi-source transfer. To the best of our knowledge, our method is the first to apply instance weighting in zero-shot CLTC. It is simple yet effective and easily extensible into multi-source transfer.
Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph autoencoders and its variants have gained much attention and popularity among various types of node embedding approaches. Most existing graph autoencoder-based methods aim to minimize the reconstruction errors of the input network while not explicitly considering the semantic relatedness between nodes. In this paper, we propose a novel network embedding method which models the consistency across different views of networks. More specifically, we create a second view from the input network which captures the relation between nodes based on node content and enforce the latent representations from the two views to be consistent by incorporating a multiview adversarial regularization module. The experimental studies on benchmark datasets prove the effectiveness of this method, and demonstrate that our method compares favorably with the state-of-the-art algorithms on challenging tasks such as link prediction and node clustering. We also evaluate our method on a real-world application, i.e., 30-day unplanned ICU readmission prediction, and achieve promising results compared with several baseline methods.
Knowledge-based question answering (KB_QA) has long focused on simple questions that can be answered from a single knowledge source, a manually curated or an automatically extracted KB. In this work, we look at answering complex questions which often require combining information from multiple sources. We present a novel KB-QA system, Multique, which can map a complex question to a complex query pattern using a sequence of simple queries each targeted at a specific KB. It finds simple queries using a neural-network based model capable of collective inference over textual relations in extracted KB and ontological relations in curated KB. Experiments show that our proposed system outperforms previous KB-QA systems on benchmark datasets, ComplexWebQuestions and WebQuestionsSP.
The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.
Just as SARS-CoV-2, a new form of coronavirus continues to infect a growing number of people around the world, harmful misinformation about the outbreak also continues to spread. With the goal of combating misinformation, we designed and built Jennifer–a chatbot maintained by a global group of volunteers. With Jennifer, we hope to learn whether public information from reputable sources could be more effectively organized and shared in the wake of a crisis as well as to understand issues that the public were most immediately curious about. In this paper, we introduce Jennifer and describe the design of this proof-of-principle system. We also present lessons learned and discuss open challenges. Finally, to facilitate future research, we release COVID-19 Question Bank, a dataset of 3,924 COVID-19-related questions in 944 groups, gathered from our users and volunteers.
Resources for Semantic Role Labeling (SRL) are typically annotated by experts at great expense. Prior attempts to develop crowdsourcing methods have either had low accuracy or required substantial expert annotation. We propose a new multi-stage crowd workflow that substantially reduces expert involvement without sacrificing accuracy. In particular, we introduce a unique filter stage based on the key observation that crowd workers are able to almost perfectly filter out incorrect options for labels. Our three-stage workflow produces annotations with 95% accuracy for predicate labels and 93% for argument labels, which is comparable to expert agreement. Compared to prior work on crowdsourcing for SRL, we decrease expert effort by 4x, from 56% to 14% of cases. Our approach enables more scalable annotation of SRL, and could enable annotation of NLP tasks that have previously been considered too complex to effectively crowdsource.
Semantic role labeling (SRL) identifies predicate-argument structure(s) in a given sentence. Although different languages have different argument annotations, polyglot training, the idea of training one model on multiple languages, has previously been shown to outperform monolingual baselines, especially for low resource languages. In fact, even a simple combination of data has been shown to be effective with polyglot training by representing the distant vocabularies in a shared representation space. Meanwhile, despite the dissimilarity in argument annotations between languages, certain argument labels do share common semantic meaning across languages (e.g. adjuncts have more or less similar semantic meaning across languages). To leverage such similarity in annotation space across languages, we propose a method called Cross-Lingual Argument Regularizer (CLAR). CLAR identifies such linguistic annotation similarity across languages and exploits this information to map the target language arguments using a transformation of the space on which source language arguments lie. By doing so, our experimental results show that CLAR consistently improves SRL performance on multiple languages over monolingual and polyglot baselines for low resource languages.
Split and Rephrase is a text simplification task of rewriting a complex sentence into simpler ones. As a relatively new task, it is paramount to ensure the soundness of its evaluation benchmark and metric. We find that the widely used benchmark dataset universally contains easily exploitable syntactic cues caused by its automatic generation process. Taking advantage of such cues, we show that even a simple rule-based model can perform on par with the state-of-the-art model. To remedy such limitations, we collect and release two crowdsourced benchmark datasets. We not only make sure that they contain significantly more diverse syntax, but also carefully control for their quality according to a well-defined set of criteria. While no satisfactory automatic metric exists, we apply fine-grained manual evaluation based on these criteria using crowdsourcing, showing that our datasets better represent the task and are significantly more challenging for the models.
Interpretability of predictive models is becoming increasingly important with growing adoption in the real-world. We present RuleNN, a neural network architecture for learning transparent models for sentence classification. The models are in the form of rules expressed in first-order logic, a dialect with well-defined, human-understandable semantics. More precisely, RuleNN learns linguistic expressions (LE) built on top of predicates extracted using shallow natural language understanding. Our experimental results show that RuleNN outperforms statistical relational learning and other neuro-symbolic methods, and performs comparably with black-box recurrent neural networks. Our user studies confirm that the learned LEs are explainable and capture domain semantics. Moreover, allowing domain experts to modify LEs and instill more domain knowledge leads to human-machine co-creation of models with better performance.
Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.
Entity resolution (ER) is the task of identifying different representations of the same real-world entities across databases. It is a key step for knowledge base creation and text mining. Recent adaptation of deep learning methods for ER mitigates the need for dataset-specific feature engineering by constructing distributed representations of entity records. While these methods achieve state-of-the-art performance over benchmark data, they require large amounts of labeled data, which are typically unavailable in realistic ER applications. In this paper, we develop a deep learning-based method that targets low-resource settings for ER through a novel combination of transfer learning and active learning. We design an architecture that allows us to learn a transferable model from a high-resource setting to a low-resource one. To further adapt to the target dataset, we incorporate active learning that carefully selects a few informative examples to fine-tune the transferred model. Empirical evaluation demonstrates that our method achieves comparable, if not better, performance compared to state-of-the-art learning-based methods while using an order of magnitude fewer labels.
While the role of humans is increasingly recognized in machine learning community, representation of and interaction with models in current human-in-the-loop machine learning (HITL-ML) approaches are too low-level and far-removed from human’s conceptual models. We demonstrate HEIDL, a prototype HITL-ML system that exposes the machine-learned model through high-level, explainable linguistic expressions formed of predicates representing semantic structure of text. In HEIDL, human’s role is elevated from simply evaluating model predictions to interpreting and even updating the model logic directly by enabling interaction with rule predicates themselves. Raising the currency of interaction to such semantic levels calls for new interaction paradigms between humans and machines that result in improved productivity for text analytics model development process. Moreover, by involving humans in the process, the human-machine co-created models generalize better to unseen data as domain experts are able to instill their expertise by extrapolating from what has been learned by automated algorithms from few labelled data.
Natural language understanding at the semantic level and independent of language variations is of great practical value. Existing approaches such as semantic role labeling (SRL) and abstract meaning representation (AMR) still have features related to the peculiarities of the particular language. In this work we describe various challenges and possible solutions in designing a semantic representation that is universal across a variety of languages.
The rise of enterprise applications over unstructured and semi-structured documents poses new challenges to text understanding systems across multiple dimensions. We present SystemT, a declarative text understanding system that addresses these challenges and has been deployed in a wide range of enterprise applications. We highlight the design considerations and decisions behind SystemT in addressing the needs of the enterprise setting. We also summarize the impact of SystemT on business and education.
Phonetic similarity algorithms identify words and phrases with similar pronunciation which are used in many natural language processing tasks. However, existing approaches are designed mainly for Indo-European languages and fail to capture the unique properties of Chinese pronunciation. In this paper, we propose a high dimensional encoded phonetic similarity algorithm for Chinese, DIMSIM. The encodings are learned from annotated data to separately map initial and final phonemes into n-dimensional coordinates. Pinyin phonetic similarities are then calculated by aggregating the similarities of initial, final and tone. DIMSIM demonstrates a 7.5X improvement on mean reciprocal rank over the state-of-the-art phonetic similarity approaches.
Fundamental to several knowledge-centric applications is the need to identify named entities from their textual mentions. However, entities lack a unique representation and their mentions can differ greatly. These variations arise in complex ways that cannot be captured using textual similarity metrics. However, entities have underlying structures, typically shared by entities of the same entity type, that can help reason over their name variations. Discovering, learning and manipulating these structures typically requires high manual effort in the form of large amounts of labeled training data and handwritten transformation programs. In this work, we propose an active-learning based framework that drastically reduces the labeled data required to learn the structures of entities. We show that programs for mapping entity mentions to their structures can be automatically generated using human-comprehensible labels. Our experiments show that our framework consistently outperforms both handwritten programs and supervised learning models. We also demonstrate the utility of our framework in relation extraction and entity resolution tasks.
Crowdsourcing has proven to be an effective method for generating labeled data for a range of NLP tasks. However, multiple recent attempts of using crowdsourcing to generate gold-labeled training data for semantic role labeling (SRL) reported only modest results, indicating that SRL is perhaps too difficult a task to be effectively crowdsourced. In this paper, we postulate that while producing SRL annotation does require expert involvement in general, a large subset of SRL labeling tasks is in fact appropriate for the crowd. We present a novel workflow in which we employ a classifier to identify difficult annotation tasks and route each task either to experts or crowd workers according to their difficulties. Our experimental evaluation shows that the proposed approach reduces the workload for experts by over two-thirds, and thus significantly reduces the cost of producing SRL annotation at little loss in quality.
Semantic role labeling (SRL) is the task of identifying and labeling predicate-argument structures in sentences with semantic frame and role labels. A known challenge in SRL is the large number of low-frequency exceptions in training data, which are highly context-specific and difficult to generalize. To overcome this challenge, we propose the use of instance-based learning that performs no explicit generalization, but rather extrapolates predictions from the most similar instances in the training data. We present a variant of k-nearest neighbors (kNN) classification with composite features to identify nearest neighbors for SRL. We show that high-quality predictions can be derived from a very small number of similar instances. In a comparative evaluation we experimentally demonstrate that our instance-based learning approach significantly outperforms current state-of-the-art systems on both in-domain and out-of-domain data, reaching F1-scores of 89,28% and 79.91% respectively.
Semantic Role Labeling (SRL) is the task of identifying the predicate-argument structure in sentences with semantic frame and role labels. For the English language, the Proposition Bank provides both a lexicon of all possible semantic frames and large amounts of labeled training data. In order to expand SRL beyond English, previous work investigated automatic approaches based on parallel corpora to automatically generate Proposition Banks for new target languages (TLs). However, this approach heuristically produces the frame lexicon from word alignments, leading to a range of lexicon-level errors and inconsistencies. To address these issues, we propose to manually alias TL verbs to existing English frames. For instance, the German verb drehen may evoke several meanings, including “turn something” and “film something”. Accordingly, we alias the former to the frame TURN.01 and the latter to a group of frames that includes FILM.01 and SHOOT.03. We execute a large-scale manual aliasing effort for three target languages and apply the new lexicons to automatically generate large Proposition Banks for Chinese, French and German with manually curated frames. We present a detailed evaluation in which we find that our proposed approach significantly increases the quality and consistency of the generated Proposition Banks. We release these resources to the research community.
We present PolyglotIE, a web-based tool for developing extractors that perform Information Extraction (IE) over multilingual data. Our tool has two core features: First, it allows users to develop extractors against a unified abstraction that is shared across a large set of natural languages. This means that an extractor needs only be created once for one language, but will then run on multilingual data without any additional effort or language-specific knowledge on part of the user. Second, it embeds this abstraction as a set of views within a declarative IE system, allowing users to quickly create extractors using a mature IE query language. We present PolyglotIE as a hands-on demo in which users can experiment with creating extractors, execute them on multilingual text and inspect extraction results. Using the UI, we discuss the challenges and potential of using unified, crosslingual semantic abstractions as basis for downstream applications. We demonstrate multilingual IE for 9 languages from 4 different language groups: English, German, French, Spanish, Japanese, Chinese, Arabic, Russian and Hindi.
The rise of Big Data analytics over unstructured text has led to renewed interest in information extraction (IE). These applications need effective IE as a first step towards solving end-to-end real world problems (e.g. biology, medicine, finance, media and entertainment, etc). Much recent NLP research has focused on addressing specific IE problems using a pipeline of multiple machine learning techniques. This approach requires an analyst with the expertise to answer questions such as: “What ML techniques should I combine to solve this problem?”; “What features will be useful for the composite pipeline?”; and “Why is my model giving the wrong answer on this document?”. The need for this expertise creates problems in real world applications. It is very difficult in practice to find an analyst who both understands the real world problem and has deep knowledge of applied machine learning. As a result, the real impact by current IE research does not match up to the abundant opportunities available.In this tutorial, we introduce the concept of transparent machine learning. A transparent ML technique is one that:- produces models that a typical real world use can read and understand;- uses algorithms that a typical real world user can understand; and- allows a real world user to adapt models to new domains.The tutorial is aimed at IE researchers in both the academic and industry communities who are interested in developing and applying transparent ML.