Despite the rapid progress of large language models (LLMs), their task performance remains sensitive to prompt design. Recent studies have explored leveraging the LLM itself as an optimizer to identify optimal prompts that maximize task accuracy. However, when evaluating prompts, such approaches heavily rely on elusive manually annotated gold labels to calculate task accuracy for each candidate prompt, which hinders its generality. To overcome the limitation, this work proposes GLaPE, a gold label-agnostic prompt evaluation method to alleviate dependence on gold labels. GLaPE is composed of two critical aspects: self-consistency evaluation of a single prompt and mutual-consistency refinement across multiple prompts. Experimental results on 8 widely-recognized reasoning tasks demonstrate that GLaPE can produce more effective prompts, achieving performance comparable to those derived from manually annotated gold labels. Analysis shows that GLaPE provides reliable evaluations aligned with accuracy, even in the absence of gold labels. Code is publicly available at **Anonymous**.
Large language models (LLMs) have played a pivotal role in building communicative AI, yet they encounter the challenge of efficient updates. Model editing enables the manipulation of specific knowledge memories and the behavior of language generation without retraining. However, the robustness of model editing remains an open question. This work seeks to understand the strengths and limitations of editing methods, facilitating practical applications of communicative AI. We focus on three key research questions. RQ1: Can edited LLMs behave consistently resembling communicative AI in realistic situations? RQ2: To what extent does the rephrasing of prompts lead LLMs to deviate from the edited knowledge memory? RQ3: Which knowledge features are correlated with the performance and robustness of editing? Our empirical studies uncover a substantial disparity between existing editing methods and the practical application of LLMs. On rephrased prompts that are flexible but common in realistic applications, the performance of editing experiences a significant decline. Further analysis shows that more popular knowledge is memorized better, easier to recall, and more challenging to edit effectively.
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. Compared to typical machine translation that focuses solely on source-to-target mapping, LLM-based translation can potentially mimic the human translation process, which might take preparatory steps to ensure high-quality translation. This work explores this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs first to analyze the given source sentence and induce three aspects of translation-related knowledge (keywords, topics, and relevant demonstrations) to guide the final translation process. Moreover, we employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge. Both automatic (3 LLMs × 11 directions × 2 automatic metrics) and human evaluation (preference study and MQM) demonstrate the effectiveness of MAPS. Further analysis shows that by mimicking the human translation process, MAPS reduces various translation errors such as hallucination, ambiguity, mistranslation, awkward style, untranslated text, and omission. Source code is available at https://github.com/zwhe99/MAPS-mt.
Large language models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and reasoning over specialized knowledge. To address these issues, we propose MedAgents, a novel multi-disciplinary collaboration framework for the medical domain. MedAgents leverages LLM-based agents in a role-playing setting that participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work focuses on the zero-shot setting, which is applicable in real-world scenarios. Experimental results on nine datasets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MedAgents framework excels at mining and harnessing the medical expertise within LLMs, as well as extending its reasoning abilities. Our code can be found at https://github.com/gersteinlab/MedAgents.
Neural-symbolic methods have demonstrated efficiency in enhancing the reasoning abilities of large language models (LLMs). However, existing methods mainly rely on syntactically mapping natural languages to complete formal languages like Python and SQL. Those methods require that reasoning tasks be convertible into programs, which cater to the computer execution mindset and deviate from human reasoning habits. To broaden symbolic methods’ applicability and adaptability in the real world, we propose Meta-Reasoning from a linguistic perspective. This method empowers LLMs to deconstruct reasoning-independent semantic information into generic symbolic representations, thereby efficiently capturing more generalized reasoning knowledge. We conduct extensive experiments on more than ten datasets encompassing conventional reasoning tasks like arithmetic, symbolic, and logical reasoning, and the more complex interactive reasoning tasks like theory-of-mind reasoning. Experimental results demonstrate that Meta-Reasoning significantly enhances in-context reasoning accuracy, learning efficiency, out-of-domain generalization, and output stability compared to the Chain-of-Thought technique.
Autonomous graphical user interface (GUI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, most existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-GUI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique—leveraging a series of intermediate previous action histories and future action plans—to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-GUI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-GUI.
Bargaining is an important and unique part of negotiation between humans. As LLM-driven agents learn to negotiate and act like real humans, how to evaluate agents’ bargaining abilities remains an open problem.For the first time, we formally described the Bargaining task as an asymmetric incomplete information game, defining the gains of the Buyer and Seller in multiple bargaining processes. It allows us to quantitatively assess an agent’s performance in the Bargain task.We collected a real product price dataset, AmazonHistoryPrice, and conducted evaluations of various LLM agents’ bargaining abilities. We find that playing a Buyer is much harder than a Seller, and increasing model size can not effectively improve the Buyer’s performance.To address the challenge, we propose a novel approach called OG-Narrator that integrates a deterministic Offer Generator to control the price range of Buyer’s offers, and an LLM Narrator to create natural language sentences for generated offers.Experimental results show that OG-Narrator improves the buyer’s deal rates from 26.67% to 88.88% and brings a ten times multiplication of profits on all baselines, even a model that has not been aligned.
Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation.However, those GUI agents require comprehensive cognition including exhaustive perception and reliable action response.We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel.Second, CAP decomposes the action prediction into sub-problems: determining the action type and then identifying the action target conditioned on the action type.With our technical design, our agent achieves state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at https://github.com/xbmxb/CoCo-Agent.
The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% → 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at https://github.com/sqzhang-lazy/D-PoT.
Large language models (LLMs) have exhibited great potential in autonomously completing tasks across real-world applications. Despite this, these LLM agents introduce unexpected safety risks when operating in interactive environments. Instead of centering on the harmlessness of LLM-generated content in most prior studies, this work addresses the imperative need for benchmarking the behavioral safety of LLM agents within diverse environments. We introduce R-Judge, a benchmark crafted to evaluate the proficiency of LLMs in judging and identifying safety risks given agent interaction records. R-Judge comprises 569 records of multi-turn agent interaction, encompassing 27 key risk scenarios among 5 application categories and 10 risk types. It is of high-quality curation with annotated safety labels and risk descriptions. Evaluation of 11 LLMs on R-Judge shows considerable room for enhancing the risk awareness of LLMs: The best-performing model, GPT-4o, achieves 74.42% while no other models significantly exceed the random. Moreover, we reveal that risk awareness in open agent scenarios is a multi-dimensional capability involving knowledge and reasoning, thus challenging for LLMs. With further experiments, we find that fine-tuning on safety judgment significantly improve model performance while straightforward prompting mechanisms fail. R-Judge is publicly available at Annoymous.
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing specific background documents. This task becomes notably challenging in a zero-shot setting where no data is available to train tailored retrieval-reader models.While recent Large Language Models (LLMs) like GPT-3 have demonstrated their effectiveness in zero-shot ODQA using direct prompting methods, these methods still fall short of fully harnessing the potential of LLMs when implicitly invoked.In this paper, we propose a Self-Prompting framework to explicitly utilize the massive knowledge encoded in the parameters of LLMs and their strong instruction understanding abilities. Concretely, we prompt LLMs step by step to generate multiple pseudo QA pairs with background passages and explanations entirely from scratch.These generated elements are then utilized for in-context learning. Experimental results show that our method significantly surpasses previous state-of-the-art zero-shot methods on three widely-used ODQA datasets and even achieves comparable performance with various customized fine-tuned models on full training data. Our code is available at https://github.com/lockon-n/self-prompting.
Insufficient modeling of human preferences within the reward model is a major obstacle for leveraging human feedback to improve translation quality. Fortunately, quality estimation (QE), which predicts the quality of a given translation without reference, has achieved impressive alignment with human evaluations in the last two years. In this work, we investigate the potential of employing the QE model as the reward model to predict human preferences for feedback training. We first identify the overoptimization problem during QE-based feedback training, manifested as an increase in reward while translation quality declines. We examine the problem and argue that the vulnerability of the QE model might lead to high rewards for incorrect translations, resulting in overoptimization and error propagation. To address the problem, we adopt a simple yet effective method that uses heuristic rules to detect the incorrect translations and assigns a penalty term to the reward scores of them. Experimental results show that the proposed QE-based feedback training achieves consistent and significant improvements across various settings, further verified through human preference studies. Our subsequent analysis demonstrates the high data efficiency of the proposed QE-based feedback training: it outperforms systems using larger parallel corpora by a small amount of monolingual data. Our code is available at: https://github.com/zwhe99/FeedbackMT
Text watermarking technology aims to tag and identify content produced by large language models (LLMs) to prevent misuse. In this study, we introduce the concept of cross-lingual consistency in text watermarking, which assesses the ability of text watermarks to maintain their effectiveness after being translated into other languages. Preliminary empirical results from two LLMs and three watermarking methods reveal that current text watermarking technologies lack consistency when texts are translated into various languages. Based on this observation, we propose a Cross-lingual Watermark Removal Attack (CWRA) to bypass watermarking by first obtaining a response from an LLM in a pivot language, which is then translated into the target language. CWRA can effectively remove watermarks, decreasing the AUCs to a random-guessing level without performance loss. Furthermore, we analyze two key factors that contribute to the cross-lingual consistency in text watermarking and propose X-SIR as a defense method against CWRA.
Despite the notable success of language models (LMs) in various natural language processing (NLP) tasks, the reliability of LMs is susceptible to backdoor attacks. Prior research attempts to mitigate backdoor learning while training the LMs on the poisoned dataset, yet struggles against complex backdoor attacks in real-world scenarios. In this paper, we investigate the learning mechanisms of backdoor LMs in the frequency space by Fourier analysis. Our findings indicate that the backdoor mapping presented on the poisoned datasets exhibits a more discernible inclination towards lower frequency compared to clean mapping, resulting in the faster convergence of backdoor mapping. To alleviate this dilemma, we propose Multi-ScaleLow-Rank Adaptation (MuScleLoRA), which deploys multiple radial scalings in the frequency space with low-rank adaptation to the target model and further aligns the gradients when updating parameters. Through downscaling in the frequency space, MuScleLoRA encourages the model to prioritize the learning of relatively high-frequency clean mapping, consequently mitigating backdoor learning. Experimental results demonstrate that MuScleLoRA outperforms baselines significantly. Notably, MuScleLoRA reduces the average success rate of diverse backdoor attacks to below 15% across multiple datasets and generalizes to various backbone LMs, including BERT, RoBERTa, and Llama2. The codes are publicly available at Anonymous.
Recent work has showcased the powerful capability of large language models (LLMs) in recalling knowledge and reasoning. However, the reliability of LLMs in combining these two capabilities into reasoning through multi-hop facts has not been widely explored. This paper systematically investigates the possibilities for LLMs to utilize shortcuts based on direct connections between the initial and terminal entities of multi-hop knowledge. We first explore the existence of factual shortcuts through Knowledge Neurons, revealing that: (i) the strength of factual shortcuts is highly correlated with the frequency of co-occurrence of initial and terminal entities in the pre-training corpora; (ii) few-shot prompting leverage more shortcuts in answering multi-hop questions compared to chain-of-thought prompting. Then, we analyze the risks posed by factual shortcuts from the perspective of multi-hop knowledge editing. Analysis shows that approximately 20% of the failures are attributed to shortcuts, and the initial and terminal entities in these failure instances usually have higher co-occurrences in the pre-training corpus. Finally, we propose erasing shortcut neurons to mitigate the associated risks and find that this approach significantly reduces failures in multiple-hop knowledge editing caused by shortcuts. Code is publicly available at https://github.com/Jometeorie/MultiHopShortcuts.
Large language models (LLMs) empowered by chain-of-thought (CoT) prompting have yielded remarkable prowess in reasoning tasks. Nevertheless, current methods predominantly lean on handcrafted or task-specific demonstrations, lack reliable knowledge basis and thus struggle for trustworthy responses in an automated pattern. While recent works endeavor to improve upon one certain aspect, they ignore the importance and necessity of establishing an integrated and interpretable reasoning system. To address these drawbacks and provide a universal solution, we propose AuRoRA: a one-for-all platform for augmented reasoning and refining based on CoT prompting that excels in adaptability, reliability, integrity, and interpretability. The system exhibits superior performances across six reasoning tasks and offers real-time visual analysis, which has pivotal academic and application value in the era of LLMs. The AuRoRA platform is available at https://huggingface.co/spaces/Anni123/AuRoRA.
Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions through step-by-step reasoning chains. Despite its success, the efficacy of such reasoning is inherently contingent upon the quality of CoT. However, flawless CoT reasoning cannot be guaranteed due to the presence of indecomposable questions and the potential for erroneous reasoning chains, particularly in the case of small-scale language models. To tackle this challenge, we propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain. We proceed with CoT reasoning when the reasoning chain demonstrates confidence; otherwise, we opt to predict the answer directly. SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks. Code is available at Anonymous.
Artificial intelligence (AI) encompasses knowledge acquisition and real-world grounding across various modalities. As a multidisciplinary research field, multimodal large language models (MLLMs) have recently garnered growing interest in both academia and industry, showing an unprecedented trend to achieve human-level AI via MLLMs. These large models offer an effective vehicle for understanding, reasoning, and planning by integrating and modeling diverse information modalities, including language, visual, auditory, and sensory data. This tutorial aims to deliver a comprehensive review of cutting-edge research in MLLMs, focusing on four key areas: MLLM architecture design, instructional learning, multimodal reasoning, and the efficiency of MLLMs. We will explore technical advancements, synthesize key challenges, and discuss potential avenues for future research.
Masked Language Modeling (MLM) has been widely used as the denoising objective in pre-training language models (PrLMs). Existing PrLMs commonly adopt a Random-Token Masking strategy where a fixed masking ratio is applied and different contents are masked by an equal probability throughout the entire training. However, the model may receive complicated impact from pre-training status, which changes accordingly as training time goes on. In this paper, we show that such time-invariant MLM settings on masking ratio and masked content are unlikely to deliver an optimal outcome, which motivates us to explore the influence of time-variant MLM settings. We propose two scheduled masking approaches that adaptively tune the masking ratio and masked content in different training stages, which improves the pre-training efficiency and effectiveness verified on the downstream tasks. Our work is a pioneer study on time-variant masking strategy on ratio and content and gives a better understanding of how masking ratio and masked content influence the MLM pre-training.
Automatic summarization generates concise summaries that contain key ideas of source documents. As the most mainstream datasets for the news sub-domain, CNN/DailyMail and BBC XSum have been widely used for performance benchmarking. However, the reference summaries of those datasets turn out to be noisy, mainly in terms of factual hallucination and information redundancy. To address this challenge, we first annotate new expert-writing Element-aware test sets following the “Lasswell Communication Model” proposed by Lasswell, allowing reference summaries to focus on more fine-grained news elements objectively and comprehensively. Utilizing the new test sets, we observe the surprising zero-shot summary ability of LLMs, which addresses the issue of the inconsistent results between human preference and automatic evaluation metrics of LLMs’ zero-shot summaries in prior work. Further, we propose a Summary Chain-of-Thought (SumCoT) technique to elicit LLMs to generate summaries step by step, which helps them integrate more fine-grained details of source documents into the final summaries that correlate with the human writing mindset. Experimental results show our method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs by +4.33/+4.77 in ROUGE-L on the two datasets, respectively. Dataset and code are publicly available at https://github.com/Alsace08/SumCoT.
In open-retrieval conversational machine reading (OR-CMR) task, machines are required to do multi-turn question answering given dialogue history and a textual knowledge base. Existing works generally utilize two independent modules to approach this problem’s two successive sub-tasks: first with a hard-label decision making and second with a question generation aided by various entailment reasoning methods. Such usual cascaded modeling is vulnerable to error propagation and prevents the two sub-tasks from being consistently optimized. In this work, we instead model OR-CMR as a unified text-to-text task in a fully end-to-end style. Experiments on the ShARC and OR-ShARC dataset show the effectiveness of our proposed end-to-end framework on both sub-tasks by a large margin, achieving new state-of-the-art results. Further ablation studies support that our framework can generalize to different backbone models.
Commonsense fact verification, as a challenging branch of commonsense question-answering (QA), aims to verify through facts whether a given commonsense claim is correct or not. Answering commonsense questions necessitates a combination of knowledge from various levels. However, existing studies primarily rest on grasping either unstructured evidence or potential reasoning paths from structured knowledge bases, yet failing to exploit the benefits of heterogeneous knowledge simultaneously. In light of this, we propose Decker, a commonsense fact verification model that is capable of bridging heterogeneous knowledge by uncovering latent relationships between structured and unstructured knowledge. Experimental results on two commonsense fact verification benchmark datasets, CSQA2.0 and CREAK demonstrate the effectiveness of our Decker and further analysis verifies its capability to seize more precious information through reasoning. The official implementation of Decker is available at https://github.com/Anni-Zou/Decker.
Spurred by advancements in scale, large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot—i.e., without adaptation on downstream data. Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community due to the fact that it can generate high-quality responses to human input and self-correct previous mistakes based on subsequent conversations. However, it is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot. In this work, we empirically analyze the zero-shot learning ability of ChatGPT by evaluating it on 20 popular NLP datasets covering 7 representative task categories. With extensive empirical studies, we demonstrate both the effectiveness and limitations of the current version of ChatGPT. We find that ChatGPT performs well on many tasks favoring reasoning capabilities (e.g., arithmetic reasoning) while it still faces challenges when solving specific tasks such as sequence tagging. We additionally provide in-depth analysis through qualitative case studies.
Tangled multi-party dialogue contexts lead to challenges for dialogue reading comprehension, where multiple dialogue threads flow simultaneously within a common dialogue record, increasing difficulties in understanding the dialogue history for both human and machine. Previous studies mainly focus on utterance encoding methods with carefully designed features but pay inadequate attention to characteristic features of the structure of dialogues. We specially take structure factors into account and design a novel model for dialogue disentangling. Based on the fact that dialogues are constructed on successive participation and interactions between speakers, we model structural information of dialogues in two aspects: 1)speaker property that indicates whom a message is from, and 2) reference dependency that shows whom a message may refer to. The proposed method achieves new state-of-the-art on the Ubuntu IRC benchmark dataset and contributes to dialogue-related comprehension.
Training dense passage representations via contrastive learning has been shown effective for Open-Domain Passage Retrieval (ODPR). Existing studies focus on further optimizing by improving negative sampling strategy or extra pretraining. However, these studies keep unknown in capturing passage with internal representation conflicts from improper modeling granularity. Specifically, under our observation that a passage can be organized by multiple semantically different sentences, modeling such a passage as a unified dense vector is not optimal. This work thus presents a refined model on the basis of a smaller granularity, contextual sentences, to alleviate the concerned conflicts. In detail, we introduce an in-passage negative sampling strategy to encourage a diverse generation of sentence representations within the same passage. Experiments on three benchmark datasets verify the efficacy of our method, especially on datasets where conflicts are severe. Extensive experiments further present good transferability of our method across datasets.
Machine reading comprehension is a heavily-studied research and test field for evaluating new pre-trained language models (PrLMs) and fine-tuning strategies, and recent studies have enriched the pre-trained language models with syntactic, semantic and other linguistic information to improve the performance of the models. In this paper, we imitate the human reading process in connecting the anaphoric expressions and explicitly leverage the coreference information of the entities to enhance the word embeddings from the pre-trained language model, in order to highlight the coreference mentions of the entities that must be identified for coreference-intensive question answering in QUOREF, a relatively new dataset that is specifically designed to evaluate the coreference-related performance of a model. We use two strategies to fine-tune a pre-trained language model, namely, placing an additional encoder layer after a pre-trained language model to focus on the coreference mentions or constructing a relational graph convolutional network to model the coreference relations. We demonstrate that the explicit incorporation of coreference information in the fine-tuning stage performs better than the incorporation of the coreference information in pre-training a language model.
Multi-turn dialogue modeling as a challenging branch of natural language understanding (NLU), aims to build representations for machines to understand human dialogues, which provides a solid foundation for multiple downstream tasks. Recent studies of dialogue modeling commonly employ pre-trained language models (PrLMs) to encode the dialogue history as successive tokens, which is insufficient in capturing the temporal characteristics of dialogues. Therefore, we propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder, which explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks. Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.
Discriminative pre-trained language models (PrLMs) can be generalized as denoising auto-encoders that work with two procedures, ennoising and denoising. First, an ennoising process corrupts texts with arbitrary noising functions to construct training instances. Then, a denoising language model is trained to restore the corrupted tokens. Existing studies have made progress by optimizing independent strategies of either ennoising or denosing. They treat training instances equally throughout the training process, with little attention on the individual contribution of those instances. To model explicit signals of instance contribution, this work proposes to estimate the complexity of restoring the original sentences from corrupted ones in language model pre-training. The estimations involve the corruption degree in the ennoising data construction process and the prediction confidence in the denoising counterpart. Experimental results on natural language understanding and reading comprehension benchmarks show that our approach improves pre-training efficiency, effectiveness, and robustness. Code is publicly available at https://github.com/cooelf/InstanceReg.
Recently, the problem of robustness of pre-trained language models (PrLMs) has received increasing research interest. Latest studies on adversarial attacks achieve high attack success rates against PrLMs, claiming that PrLMs are not robust. However, we find that the adversarial samples that PrLMs fail are mostly non-natural and do not appear in reality. We question the validity of the current evaluation of robustness of PrLMs based on these non-natural adversarial samples and propose an anomaly detector to evaluate the robustness of PrLMs with more natural adversarial samples. We also investigate two applications of the anomaly detector: (1) In data augmentation, we employ the anomaly detector to force generating augmented data that are distinguished as non-natural, which brings larger gains to the accuracy of PrLMs. (2) We apply the anomaly detector to a defense framework to enhance the robustness of PrLMs. It can be used to defend all types of attacks and achieves higher accuracy on both adversarial samples and compliant samples than other defense frameworks.
Leveraging task-aware annotated data as supervised signals to assist with self-supervised learning on large-scale unlabeled data has become a new trend in pre-training language models. Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks. To tackle the challenge, we propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks. We conduct extensive experiments on 40 datasets, which show that our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships. The task relationships reflected by the prefixes align transfer learning performance between tasks. They also suggest directions for data augmentation with complementary tasks, which help our model achieve human-parity results on commonsense reasoning leaderboards. Code is available at https://github.com/cooelf/CompassMTL.
Machine reading comprehension (MRC) poses new challenges to logical reasoning, which aims to understand the implicit logical relations entailed in the given contexts and perform inference over them. Due to the complexity of logic, logical connections exist at different granularity levels. However, most existing methods of logical reasoning individually focus on either entity-aware or discourse-based information but ignore the hierarchical relations that may even have mutual effects. This paper proposes a holistic graph network (HGN) that deals with context at both discourse-level and word-level as the basis for logical reasoning to provide a more fine-grained relation extraction. Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism to improve the interpretation of MRC systems. Experimental results on logical reasoning QA datasets (ReClor and LogiQA) and natural language inference datasets (SNLI and ANLI) show the effectiveness and generalization of our method, and in-depth analysis verifies its capability to understand complex logical relations.
Pre-trained language models (PrLMs) have demonstrated superior performance due to their strong ability to learn universal language representations from self-supervised pre-training. However, even with the help of the powerful PrLMs, it is still challenging to effectively capture task-related knowledge from dialogue texts which are enriched by correlations among speaker-aware utterances. In this work, we present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features. To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives: 1) utterance order restoration, which predicts the order of the permuted utterances in dialogue context; 2) sentence backbone regularization, which regularizes the model to improve the factual correctness of summarized subject-verb-object triplets. Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words in pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
In this paper, we present Linguistics Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistics tasks by Multi-Task Learning. LIMIT-BERT includes five key linguistics tasks: Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, span and dependency semantic role labeling (SRL). Different from recent Multi-Task Deep Neural Networks (MT-DNN), our LIMIT-BERT is fully linguistics motivated and thus is capable of adopting an improved masked training objective according to syntactic and semantic constituents. Besides, LIMIT-BERT takes a semi-supervised learning strategy to offer the same large amount of linguistics task data as that for the language model training. As a result, LIMIT-BERT not only improves linguistics tasks performance but also benefits from a regularization effect and linguistics information that leads to more general representations to help adapt to new tasks and domains. LIMIT-BERT outperforms the strong baseline Whole Word Masking BERT on both dependency and constituent syntactic/semantic parsing, GLUE benchmark, and SNLI task. Our practice on the proposed LIMIT-BERT also enables us to release a well pre-trained model for multi-purpose of natural language processing tasks once for all.
Pinyin-to-character (P2C) conversion is the core component of pinyin-based Chinese input method engine (IME). However, the conversion is seriously compromised by the ambiguities of Chinese characters corresponding to pinyin as well as the predefined fixed vocabularies. To alleviate such inconveniences, we propose a neural P2C conversion model augmented by an online updated vocabulary with a sampling mechanism to support open vocabulary learning during IME working. Our experiments show that the proposed method outperforms commercial IMEs and state-of-the-art traditional models on standard corpus and true inputting history dataset in terms of multiple metrics and thus the online updated vocabulary indeed helps our IME effectively follows user inputting behavior.
This paper describes our SJTU-NICT’s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall F1 score and achieved the best F1 score on the DM framework.
This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other richresource languages. Our system achieves a macro-average of 68.31% LAS F1 score, with an improvement of 2.51% compared with the UDPipe.
Chinese pinyin input method engine (IME) lets user conveniently input Chinese into a computer by typing pinyin through the common keyboard. In addition to offering high conversion quality, modern pinyin IME is supposed to aid user input with extended association function. However, existing solutions for such functions are roughly based on oversimplified matching algorithms at word-level, whose resulting products provide limited extension associated with user inputs. This work presents the Moon IME, a pinyin IME that integrates the attention-based neural machine translation (NMT) model and Information Retrieval (IR) to offer amusive and customizable association ability. The released IME is implemented on Windows via text services framework.
Answering questions from university admission exams (Gaokao in Chinese) is a challenging AI task since it requires effective representation to capture complicated semantic relations between questions and answers. In this work, we propose a hybrid neural model for deep question-answering task from history examinations. Our model employs a cooperative gated neural network to retrieve answers with the assistance of extra labels given by a neural turing machine labeler. Empirical study shows that the labeler works well with only a small training dataset and the gated mechanism is good at fetching the semantic representation of lengthy answers. Experiments on question answering demonstrate the proposed model obtains substantial performance gains over various neural model baselines in terms of multiple evaluation metrics.
Representation learning is the foundation of machine reading comprehension. In state-of-the-art models, deep learning methods broadly use word and character level representations. However, character is not naturally the minimal linguistic unit. In addition, with a simple concatenation of character and word embedding, previous models actually give suboptimal solution. In this paper, we propose to use subword rather than character for word embedding enhancement. We also empirically explore different augmentation strategies on subword-augmented embedding to enhance the cloze-style reading comprehension model (reader). In detail, we present a reader that uses subword-level representation to augment word embedding with a short list to handle rare words effectively. A thorough examination is conducted to evaluate the comprehensive performance and generalization ability of the proposed reader. Experimental results show that the proposed approach helps the reader significantly outperform the state-of-the-art baselines on various public datasets.
Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus.
Traditional chatbots usually need a mass of human dialogue data, especially when using supervised machine learning method. Though they can easily deal with single-turn question answering, for multi-turn the performance is usually unsatisfactory. In this paper, we present Lingke, an information retrieval augmented chatbot which is able to answer questions based on given product introduction document and deal with multi-turn conversations. We will introduce a fine-grained pipeline processing to distill responses based on unstructured documents, and attentive sequential context-response matching for multi-turn conversations.
Semantic role labeling (SRL) aims to recognize the predicate-argument structure of a sentence. Syntactic information has been paid a great attention over the role of enhancing SRL. However, the latest advance shows that syntax would not be so important for SRL with the emerging much smaller gap between syntax-aware and syntax-agnostic SRL. To comprehensively explore the role of syntax for SRL task, we extend existing models and propose a unified framework to investigate more effective and more diverse ways of incorporating syntax into sequential neural networks. Exploring the effect of syntactic input quality on SRL performance, we confirm that high-quality syntactic parse could still effectively enhance syntactically-driven SRL. Using empirically optimized integration strategy, we even enlarge the gap between syntax-aware and syntax-agnostic SRL. Our framework achieves state-of-the-art results on CoNLL-2009 benchmarks both for English and Chinese, substantially outperforming all previous models.
This paper describes a hypernym discovery system for our participation in the SemEval-2018 Task 9, which aims to discover the best (set of) candidate hypernyms for input concepts or entities, given the search space of a pre-defined vocabulary. We introduce a neural network architecture for the concerned task and empirically study various neural network models to build the representations in latent space for words and phrases. The evaluated models include convolutional neural network, long-short term memory network, gated recurrent unit and recurrent convolutional neural network. We also explore different embedding methods, including word embedding and sense embedding for better performance.