Daniel Khashabi


2024

pdf bib
RORA: Robust Free-Text Rationale Evaluation
Zhengping Jiang | Yining Lu | Hanjie Chen | Daniel Khashabi | Benjamin Van Durme | Anqi Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Free-text rationales play a pivotal role in explainable NLP, bridging the knowledge and reasoning gaps behind a model’s decision-making. However, due to the diversity of potential reasoning paths and a corresponding lack of definitive ground truth, their evaluation remains a challenge. Existing metrics rely on the degree to which a rationale supports a target label, but we find these fall short in evaluating rationales that inadvertently leak the label. To address this problem, we propose RORA, a RObust free-text RAtionale evaluation against label leakage. RORA quantifies the new information supplied by a rationale to justify the label. This is achieved by assessing the conditional 𝒱-information (Hewitt et al., 2021) with a predictive family robust against leaky features that can be exploited by a small model. RORA consistently outperforms existing approaches in evaluating human-written, synthetic, or model-generated rationales, particularly demonstrating robustness against label leakage. We also show that RORA aligns well with human judgment, providing a more reliable and accurate measurement across diverse free-text rationales.

pdf bib
GEAR: Augmenting Language Models with Generalizable and Efficient Tool Resolution
Yining Lu | Haoping Yu | Daniel Khashabi
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Augmenting large language models (LLM) to use external tools enhances their performance across a variety of tasks. However, prior works over-rely on task-specific demonstration of tool use that limits their generalizability and computational cost due to making many calls to large-scale LLMs. We introduce GEAR, a computationally efficient query-tool grounding algorithm that is generalizable to various tasks that require tool use while not relying on task-specific demonstrations. GEAR achieves better efficiency by delegating tool grounding and execution to small language models (SLM) and LLM, respectively; while leveraging semantic and pattern-based evaluation at both question and answer levels for generalizable tool grounding. We evaluate GEAR on 14 datasets across 6 downstream tasks, demonstrating its strong generalizability to novel tasks, tools and different SLMs. Despite offering more efficiency, GEAR achieves higher precision in tool grounding compared to prior strategies using LLM prompting, thus improving downstream accuracy at a reduced computational cost. For example, we demonstrate that GEAR-augmented GPT-J and GPT-3 outperform counterpart tool-augmented baselines because of better tool use.

pdf bib
“According to . . . ”: Prompting Language Models Improves Quoting from Pre-Training Data
Orion Weller | Marc Marone | Nathaniel Weir | Dawn Lawrie | Daniel Khashabi | Benjamin Van Durme
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) may hallucinate and generate fake information, despite pre-training on factual data. Inspired by the journalistic device of “according to sources”, we propose according-to prompting: directing LLMs to ground responses against previously observed text. To quantify this grounding, we propose a novel evaluation metric (QUIP-Score) that measures the extent to which model-produced answers are directly found in underlying text corpora. We illustrate with experiments on three corpora (Wikipedia, PubMed, and the U.S. legal tax code) that these prompts improve grounding under our metrics, with the additional benefit of often improving end-task performance. Furthermore, prompts that ask the model to decrease grounding (or to ground to other corpora) indeed decrease QUIP-Score, indicating the ability of LLMs to increase or decrease grounded generations on request.

pdf bib
AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies
Xiao Ye | Andrew Wang | Jacob Choi | Yining Lu | Shreya Sharma | Lingfeng Shen | Vijay Murari Tiyyala | Nicholas Andrews | Daniel Khashabi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Humans regularly engage in analogical thinking, relating personal experiences to current situations (X is analogous to Y because of Z). Analogical thinking allows humans to solve problems in creative ways, grasp difficult concepts, and articulate ideas more effectively. Can language models (LMs) do the same? To answer this question, we propose AnaloBench, a benchmark to determine analogical reasoning ability in LMs. Our benchmarking approach focuses on aspects of this ability that are common among humans: (i) recalling related experiences from a large amount of information, and (ii) applying analogical reasoning to complex and lengthy scenarios. We collect a set of 340 high quality, human written analogies for use in our benchmark, which constitutes the largest such collection to date. We then test a broad collection of models consisting of 12 open source and 3 proprietary in various sizes and architectures. As in prior results, scaling up LMs results in some performance boosts. Surprisingly, scale offers minimal gains when, (i) analogies involve lengthy scenarios, or (ii) recalling relevant scenarios from a large pool of information, a process analogous to finding a needle in a haystack. We hope these observations encourage further research in this field.

pdf bib
k-SemStamp: A Clustering-Based Semantic Watermark for Detection of Machine-Generated Text
Abe Hou | Jingyu Zhang | Yichen Wang | Daniel Khashabi | Tianxing He
Findings of the Association for Computational Linguistics: ACL 2024

Recent watermarked generation algorithms inject detectable signatures during language generation to facilitate post-hoc detection. While token-level watermarks are vulnerable to paraphrase attacks, SemStamp (Hou et al., 2023) applies watermark on the semantic representation of sentences and demonstrates promising robustness. SemStamp employs locality-sensitive hashing (LSH) to partition the semantic space with arbitrary hyperplanes, which results in a suboptimal tradeoff between robustness and speed. We propose k-SemStamp, a simple yet effective enhancement of SemStamp, utilizing k-means clustering as an alternative of LSH to partition the embedding space with awareness of inherent semantic structure. Experimental results indicate that k-SemStamp saliently improves its robustness and sampling efficiency while preserving the generation quality, advancing a more effective tool for machine-generated text detection.

pdf bib
The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts
Lingfeng Shen | Weiting Tan | Sihao Chen | Yunmo Chen | Jingyu Zhang | Haoran Xu | Boyuan Zheng | Philipp Koehn | Daniel Khashabi
Findings of the Association for Computational Linguistics: ACL 2024

As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages,we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction.

pdf bib
Insights into LLM Long-Context Failures: When Transformers Know but Don’t Tell
Muhan Gao | TaiMing Lu | Kuai Yu | Adam Byerly | Daniel Khashabi
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) exhibit positional bias, struggling to utilize information from the middle or end of long contexts. Our study explores LLMs’ long-context reasoning by probing their hidden representations. We find that while LLMs encode the position of target information, they often fail to leverage this in generating accurate responses. This reveals a disconnect between information retrieval and utilization, a “know but don’t tell” phenomenon. We further analyze the relationship between extraction time and final accuracy, offering insights into the underlying mechanics of transformer models.

pdf bib
SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation
Abe Hou | Jingyu Zhang | Tianxing He | Yichen Wang | Yung-Sung Chuang | Hongwei Wang | Lingfeng Shen | Benjamin Van Durme | Daniel Khashabi | Yulia Tsvetkov
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Existing watermarked generation algorithms employ token-level designs and therefore, are vulnerable to paraphrase attacks. To address this issue, we introduce watermarking on the semantic representation of sentences. We propose SemStamp, a robust sentence-level semantic watermarking algorithm that uses locality-sensitive hashing (LSH) to partition the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by a language model, and conducts rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. To test the paraphrastic robustness of watermarking algorithms, we propose a “bigram paraphrase” attack that produces paraphrases with small bigram overlap with the original sentence. This attack is shown to be effective against existing token-level watermark algorithms, while posing only minor degradations to SemStamp. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on various paraphrasers and domains, but also better at preserving the quality of generation.

2023

pdf bib
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories
Alex Mallen | Akari Asai | Victor Zhong | Rajarshi Das | Daniel Khashabi | Hannaneh Hajishirzi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with tasks requiring rich world knowledge, implying the difficulty of encoding a wealth of world knowledge in their parameters. This paper aims to understand LMs’ strengths and limitations in memorizing factual knowledge, by conducting large-scale knowledge probing experiments on two open-domain entity-centric QA datasets: PopQA, our new dataset with 14k questions about long-tail entities, and EntityQuestions, a widely used open-domain QA dataset. We find that LMs struggle with less popular factual knowledge, and that retrieval augmentation helps significantly in these cases. Scaling, on the other hand, mainly improves memorization of popular knowledge, and fails to appreciably improve memorization of factual knowledge in the tail. Based on those findings, we devise a new method for retrieval-augmentation that improves performance and reduces inference costs by only retrieving non-parametric memories when necessary.

pdf bib
Self-Instruct: Aligning Language Models with Self-Generated Instructions
Yizhong Wang | Yeganeh Kordi | Swaroop Mishra | Alisa Liu | Noah A. Smith | Daniel Khashabi | Hannaneh Hajishirzi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large “instruction-tuned” language models (i.e., finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is often limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off their own generations. Our pipeline generates instructions, input, and output samples from a language model, then filters invalid or similar ones before using them to finetune the original model. Applying our method to the vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT-001, which was trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT-001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.

pdf bib
The Tail Wagging the Dog: Dataset Construction Biases of Social Bias Benchmarks
Nikil Selvam | Sunipa Dev | Daniel Khashabi | Tushar Khot | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model? In this work, we study this question by contrasting social biases with non-social biases that stem from choices made during dataset construction (which might not even be discernible to the human eye). To do so, we empirically simulate various alternative constructions for a given benchmark based on seemingly innocuous modifications (such as paraphrasing or random-sampling) that maintain the essence of their social bias. On two well-known social bias benchmarks (Winogender and BiasNLI), we observe that these shallow modifications have a surprising effect on the resulting degree of bias across various models and consequently the relative ordering of these models when ranked by measured bias. We hope these troubling observations motivate more robust measures of social biases.

pdf bib
Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency
Lingfeng Shen | Weiting Tan | Boyuan Zheng | Daniel Khashabi
Findings of the Association for Computational Linguistics: EMNLP 2023

With growing capabilities of large language models, prompting them has become the dominant way to access them. This has motivated the development of strategies for automatically selecting effective language prompts. In this paper, we introduce **pFlat** (prompt flatness), a new metric to quantify the expected utility of a language prompt. This metric is inspired by *flatness* regularization in statistical learning that quantifies the robustness of the model towards its parameter perturbations. We provide theoretical foundations for this metric and its relationship with other prompt selection metrics, providing a comprehensive understanding of existing methods. Empirically, we show that combining **pFlat** with existing metrics improves both performance and sample efficiency. Our metric outperforms the previous prompt selection metrics with an average increase of 10% in Pearson correlation across 6 classification benchmarks, and the prompt selected by our metric gains 5% higher accuracy than previous metrics across the benchmarks.

pdf bib
Representation Projection Invariance Mitigates Representation Collapse
Anastasia Razdaibiedina | Ashish Khetan | Zohar Karnin | Daniel Khashabi | Vivek Madan
Findings of the Association for Computational Linguistics: EMNLP 2023

Fine-tuning contextualized representations learned by pre-trained language models remains a prevalent practice in NLP. However, fine-tuning can lead to representation degradation (also known as representation collapse), which may result in instability, sub-optimal performance, and weak generalization. In this paper, we propose Representation Projection Invariance (REPINA), a novel regularization method to maintain the information content of representation and reduce representation collapse during fine-tuning by discouraging undesirable changes in the representations. We study the empirical behavior of the proposed regularization in comparison to 5 comparable baselines across 13 language understanding tasks (GLUE benchmark and six additional datasets). When evaluating in-domain performance, REPINA consistently outperforms other baselines on most tasks (10 out of 13). Additionally, REPINA improves out-of-distribution performance. We also demonstrate its effectiveness in few-shot settings and robustness to label perturbation. As a by-product, we extend previous studies of representation collapse and propose several metrics to quantify it. Our empirical findings show that our approach is significantly more effective at mitigating representation collapse.

2022

pdf bib
Cross-Task Generalization via Natural Language Crowdsourcing Instructions
Swaroop Mishra | Daniel Khashabi | Chitta Baral | Hannaneh Hajishirzi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.

pdf bib
ProsocialDialog: A Prosocial Backbone for Conversational Agents
Hyunwoo Kim | Youngjae Yu | Liwei Jiang | Ximing Lu | Daniel Khashabi | Gunhee Kim | Yejin Choi | Maarten Sap
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most existing dialogue systems fail to respond properly to potentially unsafe user utterances by either ignoring or passively agreeing with them. To address this issue, we introduce ProsocialDialog, the first large-scale multi-turn dialogue dataset to teach conversational agents to respond to problematic content following social norms. Covering diverse unethical, problematic, biased, and toxic situations, ProsocialDialog contains responses that encourage prosocial behavior, grounded in commonsense social rules (i.e., rules-of-thumb, RoTs). Created via a human-AI collaborative framework, ProsocialDialog consists of 58K dialogues, with 331K utterances, 160K unique RoTs, and 497K dialogue safety labels accompanied by free-form rationales.With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost. Empirical results show that Prost generates more socially acceptable dialogues compared to other state-of-the-art language and dialogue models in both in-domain and out-of-domain settings. Additionally, Canary effectively guides conversational agents and off-the-shelf language models to generate significantly more prosocial responses. Our work highlights the promise and importance of creating and steering conversational AI to be socially responsible.

pdf bib
GENIE: Toward Reproducible and Standardized Human Evaluation for Text Generation
Daniel Khashabi | Gabriel Stanovsky | Jonathan Bragg | Nicholas Lourie | Jungo Kasai | Yejin Choi | Noah A. Smith | Daniel Weld
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While often assumed a gold standard, effective human evaluation of text generation remains an important, open area for research.We revisit this problem with a focus on producing consistent evaluations that are reproducible—over time and across different populations. We study this goal in different stages of the human evaluation pipeline. In particular, we consider design choices for the annotation interface used to elicit human judgments and their impact on reproducibility. Furthermore, we develop an automated mechanism for maintaining annotator quality via a probabilistic model that detects and excludes noisy annotators. Putting these lessons together, we introduce GENIE: a system for running standardized human evaluations across different generation tasks.We instantiate GENIE with datasets representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension.For each task, GENIE offers a leaderboard that automatically crowdsources annotations for submissions, evaluating them along axes such as correctness, conciseness, and fluency.We have made the GENIE leaderboards publicly available, and have already ranked 50 submissions from 10 different research groups. We hope GENIE encourages further progress toward effective, standardized evaluations for text generation.

pdf bib
Reframing Instructional Prompts to GPTk’s Language
Swaroop Mishra | Daniel Khashabi | Chitta Baral | Yejin Choi | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: ACL 2022

What kinds of instructional prompts are easier to follow for Language Models (LMs)? We study this question by conducting extensive empirical analysis that shed light on important features of successful instructional prompts. Specifically, we study several classes of reframing techniques for manual reformulation of prompts into more effective ones. Some examples include decomposing a complex task instruction into multiple simpler tasks or itemizing instructions into sequential steps. Our experiments compare the zero-shot and few-shot performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 categories. Compared with original instructions, our reframed instructions lead to significant improvements across LMs with different sizes. For example, the same reframed prompts boost few-shot performance of GPT3-series and GPT2-series by 12.5% and 6.7% respectively averaged over all tasks. Furthermore, reframed instructions reduce the number of examples required to prompt LMs in the few-shot setting. We hope these empirically-driven techniques will pave the way towards more effective future prompting algorithms.

pdf bib
Hey AI, Can You Solve Complex Tasks by Talking to Agents?
Tushar Khot | Kyle Richardson | Daniel Khashabi | Ashish Sabharwal
Findings of the Association for Computational Linguistics: ACL 2022

Training giant models from scratch for each complex task is resource- and data-inefficient. To help develop models that can leverage existing systems, we propose a new challenge: Learning to solve complex tasks by communicating with existing agents (or models) in natural language. We design a synthetic benchmark, CommaQA, with three complex reasoning tasks (explicit, implicit, numeric) designed to be solved by communicating with existing QA agents. For instance, using text and table QA agents to answer questions such as “Who had the longest javelin throw from USA?”. We show that black-box models struggle to learn this task from scratch (accuracy under 50%) even with access to each agent’s knowledge and gold facts supervision. In contrast, models that learn to communicate with agents outperform black-box models, reaching scores of 100% when given gold decomposition supervision. However, we show that the challenge of learning to solve complex tasks by communicating with existing agents without relying on any auxiliary supervision or data still remains highly elusive. We will release CommaQA, along with a compositional generalization test split, to advance research in this direction.

pdf bib
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
Ximing Lu | Sean Welleck | Peter West | Liwei Jiang | Jungo Kasai | Daniel Khashabi | Ronan Le Bras | Lianhui Qin | Youngjae Yu | Rowan Zellers | Noah A. Smith | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.

pdf bib
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Daniel Khashabi | Xinxi Lyu | Sewon Min | Lianhui Qin | Kyle Richardson | Sean Welleck | Hannaneh Hajishirzi | Tushar Khot | Ashish Sabharwal | Sameer Singh | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a “wayward” behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.

pdf bib
Time Waits for No One! Analysis and Challenges of Temporal Misalignment
Kelvin Luu | Daniel Khashabi | Suchin Gururangan | Karishma Mandyam | Noah A. Smith
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

When an NLP model is trained on text data from one time period and tested or deployed on data from another, the resulting temporal misalignment can degrade end-task performance. In this work, we establish a suite of eight diverse tasks across different domains (social media, science papers, news, and reviews) and periods of time (spanning five years or more) to quantify the effects of temporal misalignment. Our study is focused on the ubiquitous setting where a pretrained model is optionally adapted through continued domain-specific pretraining, followed by task-specific finetuning. We establish a suite of tasks across multiple domains to study temporal misalignment in modern NLP systems. We find stronger effects of temporal misalignment on task performance than have been previously reported. We also find that, while temporal adaptation through continued pretraining can help, these gains are small compared to task-specific finetuning on data from the target time period. Our findings motivate continued research to improve temporal robustness of NLP models.

2021

pdf bib
Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?
Jieyu Zhao | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
GooAQ: Open Question Answering with Diverse Answer Types
Daniel Khashabi | Amos Ng | Tushar Khot | Ashish Sabharwal | Hannaneh Hajishirzi | Chris Callison-Burch
Findings of the Association for Computational Linguistics: EMNLP 2021

While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Google’s responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmark T5 models on GooAQ and observe that: (a) in line with recent work, LM’s strong performance on GooAQ’s short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as ‘how’ and ‘why’ questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.

pdf bib
Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models
Tushar Khot | Daniel Khashabi | Kyle Richardson | Peter Clark | Ashish Sabharwal
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a general framework called Text Modular Networks(TMNs) for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models. To ensure solvability of simpler tasks, TMNs learn the textual input-output behavior (i.e., language) of existing models through their datasets. This differs from prior decomposition-based approaches which, besides being designed specifically for each complex task, produce decompositions independent of existing sub-models. Specifically, we focus on Question Answering (QA) and show how to train a next-question generator to sequentially produce sub-questions targeting appropriate sub-models, without additional human annotation. These sub-questions and answers provide a faithful natural language explanation of the model’s reasoning. We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator. Our experiments show that ModularQA is more versatile than existing explainable systems for DROP and HotpotQA datasets, is more robust than state-of-the-art blackbox (uninterpretable) systems, and generates more understandable and trustworthy explanations compared to prior work.

pdf bib
Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies
Mor Geva | Daniel Khashabi | Elad Segal | Tushar Khot | Dan Roth | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 9

A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of ∼ 66%.

pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

pdf bib
Findings of the 2021 Conference on Machine Translation (WMT21)
Farhad Akhbardeh | Arkady Arkhangorodsky | Magdalena Biesialska | Ondřej Bojar | Rajen Chatterjee | Vishrav Chaudhary | Marta R. Costa-jussa | Cristina España-Bonet | Angela Fan | Christian Federmann | Markus Freitag | Yvette Graham | Roman Grundkiewicz | Barry Haddow | Leonie Harter | Kenneth Heafield | Christopher Homan | Matthias Huck | Kwabena Amponsah-Kaakyire | Jungo Kasai | Daniel Khashabi | Kevin Knight | Tom Kocmi | Philipp Koehn | Nicholas Lourie | Christof Monz | Makoto Morishita | Masaaki Nagata | Ajay Nagesh | Toshiaki Nakazawa | Matteo Negri | Santanu Pal | Allahsera Auguste Tapo | Marco Turchi | Valentin Vydrin | Marcos Zampieri
Proceedings of the Sixth Conference on Machine Translation

This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021.In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories. The taskwas also opened up to additional test suites toprobe specific aspects of translation.

2020

pdf bib
Not All Claims are Created Equal: Choosing the Right Statistical Approach to Assess Hypotheses
Erfan Sadeqi Azer | Daniel Khashabi | Ashish Sabharwal | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Empirical research in Natural Language Processing (NLP) has adopted a narrow set of principles for assessing hypotheses, relying mainly on p-value computation, which suffers from several known issues. While alternative proposals have been well-debated and adopted in other fields, they remain rarely discussed or used within the NLP community. We address this gap by contrasting various hypothesis assessment techniques, especially those not commonly used in the field (such as evaluations based on Bayesian inference). Since these statistical techniques differ in the hypotheses they can support, we argue that practitioners should first decide their target hypothesis before choosing an assessment method. This is crucial because common fallacies, misconceptions, and misinterpretation surrounding hypothesis assessment methods often stem from a discrepancy between what one would like to claim versus what the method used actually assesses. Our survey reveals that these issues are omnipresent in the NLP research community. As a step forward, we provide best practices and guidelines tailored to NLP research, as well as an easy-to-use package for Bayesian assessment of hypotheses, complementing existing tools.

pdf bib
Temporal Common Sense Acquisition with Minimal Supervision
Ben Zhou | Qiang Ning | Daniel Khashabi | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Temporal common sense (e.g., duration and frequency of events) is crucial for understanding natural language. However, its acquisition is challenging, partly because such information is often not expressed explicitly in text, and human annotation on such concepts is costly. This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense, extracted from a large corpus, to build TacoLM, a temporal common sense language model. Our method is shown to give quality predictions of various dimensions of temporal common sense (on UDST and a newly collected dataset from RealNews). It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA (on TimeBank, HiEVE and MCTACO) that are better than using the standard BERT. Thus, it will be an important component of temporal NLP.

pdf bib
More Bang for Your Buck: Natural Perturbation for Robust Question Answering
Daniel Khashabi | Tushar Khot | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep learning models for linguistic tasks require large training datasets, which are expensive to create. As an alternative to the traditional approach of creating new instances by repeating the process of creating one instance, we propose doing so by first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Such perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. Further, they help address the issue that even models achieving human-level scores on NLP datasets are known to be considerably sensitive to small changes in input. To evaluate the idea, we consider a recent question-answering dataset (BOOLQ) and study our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create (cost ratio under 60%), it is more effective to use them for training BOOLQ models: such models exhibit 9% higher robustness and 4.5% stronger generalization, while retaining performance on the original BOOLQ dataset.

pdf bib
Evaluating Models’ Local Decision Boundaries via Contrast Sets
Matt Gardner | Yoav Artzi | Victoria Basmov | Jonathan Berant | Ben Bogin | Sihao Chen | Pradeep Dasigi | Dheeru Dua | Yanai Elazar | Ananth Gottumukkala | Nitish Gupta | Hannaneh Hajishirzi | Gabriel Ilharco | Daniel Khashabi | Kevin Lin | Jiangming Liu | Nelson F. Liu | Phoebe Mulcaire | Qiang Ning | Sameer Singh | Noah A. Smith | Sanjay Subramanian | Reut Tsarfaty | Eric Wallace | Ally Zhang | Ben Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture the abilities a dataset is intended to test. We propose a more rigorous annotation paradigm for NLP that helps to close systematic gaps in the test data. In particular, after a dataset is constructed, we recommend that the dataset authors manually perturb the test instances in small but meaningful ways that (typically) change the gold label, creating contrast sets. Contrast sets provide a local view of a model’s decision boundary, which can be used to more accurately evaluate a model’s true linguistic capabilities. We demonstrate the efficacy of contrast sets by creating them for 10 diverse NLP datasets (e.g., DROP reading comprehension, UD parsing, and IMDb sentiment analysis). Although our contrast sets are not explicitly adversarial, model performance is significantly lower on them than on the original test sets—up to 25% in some cases. We release our contrast sets as new evaluation benchmarks and encourage future dataset construction efforts to follow similar annotation processes.

pdf bib
UNIFIEDQA: Crossing Format Boundaries with a Single QA System
Daniel Khashabi | Sewon Min | Tushar Khot | Ashish Sabharwal | Oyvind Tafjord | Peter Clark | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UNIFIEDQA, that performs well across 19 QA datasets spanning 4 diverse formats. UNIFIEDQA performs on par with 8 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UNIFIEDQA performs surprisingly well, showing strong generalization from its outof-format training data. Finally, simply finetuning this pre trained QA model into specialized models results in a new state of the art on 10 factoid and commonsense question answering datasets, establishing UNIFIEDQA as a strong starting point for building QA systems.

pdf bib
UNQOVERing Stereotyping Biases via Underspecified Questions
Tao Li | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Vivek Srikumar
Findings of the Association for Computational Linguistics: EMNLP 2020

While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.

2019

pdf bib
“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding
Ben Zhou | Daniel Khashabi | Qiang Ning | Dan Roth
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Understanding time is crucial for understanding events expressed in natural language. Because people rarely say the obvious, it is often necessary to have commonsense knowledge about various temporal aspects of events, such as duration, frequency, and temporal order. However, this important problem has so far received limited attention. This paper systematically studies this temporal commonsense problem. Specifically, we define five classes of temporal commonsense, and use crowdsourcing to develop a new dataset, MCTACO, that serves as a test set for this task. We find that the best current methods used on MCTACO are still far behind human performance, by about 20%, and discuss several directions for improvement. We hope that the new dataset and our study here can foster more future research on this topic.

pdf bib
Seeing Things from a Different Angle:Discovering Diverse Perspectives about Claims
Sihao Chen | Daniel Khashabi | Wenpeng Yin | Chris Callison-Burch | Dan Roth
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

One key consequence of the information revolution is a significant increase and a contamination of our information supply. The practice of fact checking won’t suffice to eliminate the biases in text data we observe, as the degree of factuality alone does not determine whether biases exist in the spectrum of opinions visible to us. To better understand controversial issues, one needs to view them from a diverse yet comprehensive set of perspectives. For example, there are many ways to respond to a claim such as “animals should have lawful rights”, and these responses form a spectrum of perspectives, each with a stance relative to this claim and, ideally, with evidence supporting it. Inherently, this is a natural language understanding task, and we propose to address it as such. Specifically, we propose the task of substantiated perspective discovery where, given a claim, a system is expected to discover a diverse set of well-corroborated perspectives that take a stance with respect to the claim. Each perspective should be substantiated by evidence paragraphs which summarize pertinent results and facts. We construct PERSPECTRUM, a dataset of claims, perspectives and evidence, making use of online debate websites to create the initial data collection, and augmenting it using search engines in order to expand and diversify our dataset. We use crowd-sourcing to filter out noise and ensure high-quality data. Our dataset contains 1k claims, accompanied with pools of 10k and 8k perspective sentences and evidence paragraphs, respectively. We provide a thorough analysis of the dataset to highlight key underlying language understanding challenges, and show that human baselines across multiple subtasks far outperform ma-chine baselines built upon state-of-the-art NLP techniques. This poses a challenge and opportunity for the NLP community to address.

pdf bib
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
Fernando Alva-Manchego | Eunsol Choi | Daniel Khashabi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

pdf bib
PerspectroScope: A Window to the World of Diverse Perspectives
Sihao Chen | Daniel Khashabi | Chris Callison-Burch | Dan Roth
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

This work presents PerspectroScope, a web-based system which lets users query a discussion-worthy natural language claim, and extract and visualize various perspectives in support or against the claim, along with evidence supporting each perspective. The system thus lets users explore various perspectives that could touch upon aspects of the issue at hand. The system is built as a combination of retrieval engines and learned textual-entailment-like classifiers built using a few recent developments in natural language understanding. To make the system more adaptive, expand its coverage, and improve its decisions over time, our platform employs various mechanisms to get corrections from the users. PerspectroScope is available at github.com/CogComp/perspectroscope Web demo link: http://orwell.seas.upenn.edu:4002/ Link to demo video: https://www.youtube.com/watch?v=MXBTR1Sp3Bs

2018

pdf bib
Zero-Shot Open Entity Typing as Type-Compatible Grounding
Ben Zhou | Daniel Khashabi | Chen-Tse Tsai | Dan Roth
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The problem of entity-typing has been studied predominantly as a supervised learning problems, mostly with task-specific annotations (for coarse types) and sometimes with distant supervision (for fine types). While such approaches have strong performance within datasets they often lack the flexibility to transfer across text genres and to generalize to new type taxonomies. In this work we propose a zero-shot entity typing approach that requires no annotated data and can flexibly identify newly defined types. Given a type taxonomy, the entries of which we define as Boolean functions of freebase “types,” we ground a given mention to a set of type-compatible Wikipedia entries, and then infer the target mention’s type using an inference algorithm that makes use of the types of these entries. We evaluate our system on a broad range of datasets, including standard fine-grained and coarse-grained entity typing datasets, and on a dataset in the biological domain. Our system is shown to be competitive with state-of-the-art supervised NER systems, and to outperform them on out-of-training datasets. We also show that our system significantly outperforms other zero-shot fine typing systems.

pdf bib
CogCompNLP: Your Swiss Army Knife for NLP
Daniel Khashabi | Mark Sammons | Ben Zhou | Tom Redman | Christos Christodoulopoulos | Vivek Srikumar | Nicholas Rizzolo | Lev Ratinov | Guanheng Luo | Quang Do | Chen-Tse Tsai | Subhro Roy | Stephen Mayhew | Zhili Feng | John Wieting | Xiaodong Yu | Yangqiu Song | Shashank Gupta | Shyam Upadhyay | Naveen Arivazhagan | Qiang Ning | Shaoshi Ling | Dan Roth
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences
Daniel Khashabi | Snigdha Chaturvedi | Michael Roth | Shyam Upadhyay | Dan Roth
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. We solicit and verify questions and answers for this challenge through a 4-step crowdsourcing experiment. Our challenge dataset contains 6,500+ questions for 1000+ paragraphs across 7 different domains (elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On a subset of our dataset, we found human solvers to achieve an F1-score of 88.1%. We analyze a range of baselines, including a recent state-of-art reading comprehension system, and demonstrate the difficulty of this challenge, despite a high human performance. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of question types that requires reasoning skills.

2017

pdf bib
Learning What is Essential in Questions
Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Dan Roth
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

Question answering (QA) systems are easily distracted by irrelevant or redundant words in questions, especially when faced with long or multi-sentence questions in difficult domains. This paper introduces and studies the notion of essential question terms with the goal of improving such QA solvers. We illustrate the importance of essential question terms by showing that humans’ ability to answer questions drops significantly when essential terms are eliminated from questions. We then develop a classifier that reliably (90% mean average precision) identifies and ranks essential terms in questions. Finally, we use the classifier to demonstrate that the notion of question term essentiality allows state-of-the-art QA solver for elementary-level science questions to make better and more informed decisions,improving performance by up to 5%.We also introduce a new dataset of over 2,200 crowd-sourced essential terms annotated science questions.

2016

pdf bib
Better call Saul: Flexible Programming for Learning and Inference in NLP
Parisa Kordjamshidi | Daniel Khashabi | Christos Christodoulopoulos | Bhargav Mangipudi | Sameer Singh | Dan Roth
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We present a novel way for designing complex joint inference and learning models using Saul (Kordjamshidi et al., 2015), a recently-introduced declarative learning-based programming language (DeLBP). We enrich Saul with components that are necessary for a broad range of learning based Natural Language Processing tasks at various levels of granularity. We illustrate these advances using three different, well-known NLP problems, and show how these generic learning and inference modules can directly exploit Saul’s graph-based data representation. These properties allow the programmer to easily switch between different model formulations and configurations, and consider various kinds of dependencies and correlations among variables of interest with minimal programming effort. We argue that Saul provides an extremely useful paradigm both for the design of advanced NLP systems and for supporting advanced research in NLP.

pdf bib
EDISON: Feature Extraction for NLP, Simplified
Mark Sammons | Christos Christodoulopoulos | Parisa Kordjamshidi | Daniel Khashabi | Vivek Srikumar | Paul Vijayakumar | Mazin Bokhari | Xinbo Wu | Dan Roth
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

When designing Natural Language Processing (NLP) applications that use Machine Learning (ML) techniques, feature extraction becomes a significant part of the development effort, whether developing a new application or attempting to reproduce results reported for existing NLP tasks. We present EDISON, a Java library of feature generation functions used in a suite of state-of-the-art NLP tools, based on a set of generic NLP data structures. These feature extractors populate simple data structures encoding the extracted features, which the package can also serialize to an intuitive JSON file format that can be easily mapped to formats used by ML packages. EDISON can also be used programmatically with JVM-based (Java/Scala) NLP software to provide the feature extractor input. The collection of feature extractors is organised hierarchically and a simple search interface is provided. In this paper we include examples that demonstrate the versatility and ease-of-use of the EDISON feature extraction suite to show that this can significantly reduce the time spent by developers on feature extraction design for NLP systems. The library is publicly hosted at https://github.com/IllinoisCogComp/illinois-cogcomp-nlp/, and we hope that other NLP researchers will contribute to the set of feature extractors. In this way, the community can help simplify reproduction of published results and the integration of ideas from diverse sources when developing new and improved NLP applications.

2015

pdf bib
Solving Hard Coreference Problems
Haoruo Peng | Daniel Khashabi | Dan Roth
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Search
Co-authors
Fix data