Gabriel Stanovsky


2024

pdf bib
K-QA: A Real-World Medical Q&A Benchmark
Itay Manes | Naama Ronn | David Cohen | Ran Ilan Ber | Zehavi Horowitz-Kugler | Gabriel Stanovsky
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

Ensuring the accuracy of responses provided by large language models (LLMs) is crucial, particularly in clinical settings where incorrect information may directly impact patient health. To address this challenge, we construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on a popular clinical online platform. We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements. Additionally, we formulate two NLI-based evaluation metrics approximating recall and precision: (1) comprehensiveness, measuring the percentage of essential clinical information in the generated answer and (2) hallucination rate, measuring the number of statements from the physician-curated response contradicted by the LLM answer. Finally, we use K-QA along with these metrics to evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes developed by the authors. Our findings indicate that in-context learning improves the comprehensiveness of the models, and augmented retrieval is effective in reducing hallucinations. We will make K-QA available to to the community to spur research into medically accurate NLP applications.

pdf bib
Applying Intrinsic Debiasing on Downstream Tasks: Challenges and Considerations for Machine Translation
Bar Iluz | Yanai Elazar | Asaf Yehudai | Gabriel Stanovsky
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Most works on gender bias focus on intrinsic bias — removing traces of information about a protected group from the model’s internal representation. However, these works are often disconnected from the impact of such debiasing on downstream applications, which is the main motivation for debiasing in the first place. In this work, we systematically test how methods for intrinsic debiasing affect neural machine translation models, by measuring the extrinsic bias of such systems under different design choices. We highlight three challenges and mismatches between the debiasing techniques and their end-goal usage, including the choice of embeddings to debias, the mismatch between words and sub-word tokens debiasing, and the effect on different target languages. We find that these considerations have a significant impact on downstream performance and the success of debiasing.

pdf bib
Do Zombies Understand? A Choose-Your-Own-Adventure Exploration of Machine Cognition
Ariel Goldstein | Gabriel Stanovsky
Findings of the Association for Computational Linguistics: ACL 2024

Recent advances in LLMs have sparked a debate on whether they understand text. In this position paper, we argue that opponents in this debate hold different definitions for understanding, and particularly differ in their view on the role of consciousness. To substantiate this claim, we propose a thought experiment involving an open-source chatbot Z which excels on every possible benchmark, seemingly without subjective experience. We ask whether Z is capable of understanding, and show that different schools of thought within seminal AI research seem to answer this question differently, uncovering their terminological disagreement. Moving forward, we propose two distinct working definitions for understanding which explicitly acknowledge the question of consciousness, and draw connections with a rich literature in philosophy, psychology and neuroscience.

pdf bib
Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction
Gili Lior | Yoav Goldberg | Gabriel Stanovsky
Findings of the Association for Computational Linguistics: ACL 2024

Document collections of various domains, e.g., legal, medical, or financial, often share some underlying collection-wide structure, which captures information that can aid both human users and structure-aware models.We propose to identify the typical structure of document within a collection, which requires to capture recurring topics across the collection, while abstracting over arbitrary header paraphrases, and ground each topic to respective document locations. These requirements pose several challenges: headers that mark recurring topics frequently differ in phrasing, certain section headers are unique to individual documents and do not reflect the typical structure, and the order of topics can vary between documents. Subsequently, we develop an unsupervised graph-based method which leverages both inter- and intra-document similarities, to extract the underlying collection-wide structure. Our evaluations on three diverse domains in both English and Hebrew indicate that our method extracts meaningful collection-wide structure, and we hope that future work will leverage our method for multi-document applications and structure-aware models.

pdf bib
Schema-Driven Information Extraction from Heterogeneous Tables
Fan Bai | Junmo Kang | Gabriel Stanovsky | Dayne Freitag | Mark Dredze | Alan Ritter
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM’s capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.

pdf bib
Navigating the Modern Evaluation Landscape: Considerations in Benchmarks and Frameworks for Large Language Models (LLMs)
Leshem Choshen | Ariel Gera | Yotam Perlitz | Michal Shmueli-Scheuer | Gabriel Stanovsky
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries

General-Purpose Language Models have changed the world of Natural Language Processing, if not the world itself. The evaluation of such versatile models, while supposedly similar to evaluation of generation models before them, in fact presents a host of new evaluation challenges and opportunities. In this Tutorial, we will start from the building blocks of evaluation. The tutorial welcomes people from diverse backgrounds and assumes little familiarity with metrics, datasets, prompts and benchmarks. It will lay the foundations and explain the basics and their importance, while touching on the major points and breakthroughs of the recent era of evaluation. It will also compare traditional evaluation methods – which are still widely used – to newly developed methods. We will contrast new to old approaches, from evaluating on many-task benchmarks rather than on dedicated datasets to efficiency constraints, and from testing stability and prompts on in-context learning to using the models themselves as evaluation metrics. Finally, the tutorial will cover practical issues, ranging from reviewing widely-used benchmarks and prompt banks to efficient evaluation.

pdf bib
Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias
Itay Itzhak | Gabriel Stanovsky | Nir Rosenfeld | Yonatan Belinkov
Transactions of the Association for Computational Linguistics, Volume 12

Recent studies show that instruction tuning (IT) and reinforcement learning from human feedback (RLHF) improve the abilities of large language models (LMs) dramatically. While these tuning methods can help align models with human objectives and generate high-quality text, not much is known about their potential adverse effects. In this work, we investigate the effect of IT and RLHF on decision making and reasoning in LMs, focusing on three cognitive biases—the decoy effect, the certainty effect, and the belief bias—all of which are known to influence human decision-making and reasoning. Our findings highlight the presence of these biases in various models from the GPT-3, Mistral, and T5 families. Notably, we find a stronger presence of biases in models that have undergone instruction tuning, such as Flan-T5, Mistral-Instruct, GPT3.5, and GPT4. Our work constitutes a step toward comprehending cognitive biases in instruction-tuned LMs, which is crucial for the development of more reliable and unbiased language models.1

pdf bib
State of What Art? A Call for Multi-Prompt LLM Evaluation
Moran Mizrahi | Guy Kaplan | Dan Malkin | Rotem Dror | Dafna Shahaf | Gabriel Stanovsky
Transactions of the Association for Computational Linguistics, Volume 12

Recent advances in LLMs have led to an abundance of evaluation benchmarks, which typically rely on a single instruction template per task. We create a large-scale collection of instruction paraphrases and comprehensively analyze the brittleness introduced by single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. We find that different instruction templates lead to very different performance, both absolute and relative. Instead, we propose a set of diverse metrics on multiple instruction paraphrases, specifically tailored for different use cases (e.g., LLM vs. downstream development), ensuring a more reliable and meaningful assessment of LLM capabilities. We show that our metrics provide new insights into the strengths and limitations of current LLMs.

2023

pdf bib
Evaluating and Improving the Coreference Capabilities of Machine Translation Models
Asaf Yehudai | Arie Cattan | Omri Abend | Gabriel Stanovsky
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Machine translation (MT) requires a wide range of linguistic capabilities, which current end-to-end models are expected to learn implicitly by observing aligned sentences in bilingual corpora. In this work, we ask: How well MT models learn coreference resolution via implicit signal? To answer this question, we develop an evaluation methodology that derives coreference clusters from MT output and evaluates them without requiring annotations in the target language.Following, we evaluate several prominent open-source and commercial MT systems, translating from English to six target languages, and compare them to state-of-the-art coreference resolvers on three challenging benchmarks. Our results show that the monolingual resolvers greatly outperform MT models. Motivated by this result, we experiment with different methods for incorporating the output of coreference resolution models in MT, showing improvement over strong baselines.

pdf bib
A Large-Scale Multilingual Study of Visual Constraints on Linguistic Selection of Descriptions
Uri Berger | Lea Frermann | Gabriel Stanovsky | Omri Abend
Findings of the Association for Computational Linguistics: EACL 2023

We present a large, multilingual study into how vision constrains linguistic choice, covering four languages and five linguistic properties, such as verb transitivity or use of numerals. We propose a novel method that leverages existing corpora of images with captions written by native speakers, and apply it to nine corpora, comprising 600k images and 3M captions. We study the relation between visual input and linguistic choices by training classifiers to predict the probability of expressing a property from raw images, and find evidence supporting the claim that linguistic properties are constrained by visual context across languages. We complement this investigation with a corpus study, taking the test case of numerals. Specifically, we use existing annotations (number or type of objects) to investigate the effect of different visual conditions on the use of numeral expressions in captions, and show that similar patterns emerge across languages. Our methods and findings both confirm and extend existing research in the cognitive literature. We additionally discuss possible applications for language generation.

pdf bib
Are Layout-Infused Language Models Robust to Layout Distribution Shifts? A Case Study with Scientific Documents
Catherine Chen | Zejiang Shen | Dan Klein | Gabriel Stanovsky | Doug Downey | Kyle Lo
Findings of the Association for Computational Linguistics: ACL 2023

Recent work has shown that infusing layout features into language models (LMs) improves processing of visually-rich documents such as scientific papers. Layout-infused LMs are often evaluated on documents with familiar layout features (e.g., papers from the same publisher), but in practice models encounter documents with unfamiliar distributions of layout features, such as new combinations of text sizes and styles, or new spatial configurations of textual elements. In this work we test whether layout-infused LMs are robust to layout distribution shifts. As a case study we use the task of scientific document structure recovery, segmenting a scientific paper into its structural categories (e.g., “title”, “caption”, “reference”). To emulate distribution shifts that occur in practice we re-partition the GROTOAP2 dataset. We find that under layout distribution shifts model performance degrades by up to 20 F1. Simple training strategies, such as increasing training diversity, can reduce this degradation by over 35% relative F1; however, models fail to reach in-distribution performance in any tested out-of-distribution conditions. This work highlights the need to consider layout distribution shifts during model evaluation, and presents a methodology for conducting such evaluations.

pdf bib
Exploring the Impact of Training Data Distribution and Subword Tokenization on Gender Bias in Machine Translation
Bar Iluz | Tomasz Limisiewicz | Gabriel Stanovsky | David Mareček
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
You Can Have Your Data and Balance It Too: Towards Balanced and Efficient Multilingual Models
Tomasz Limisiewicz | Dan Malkin | Gabriel Stanovsky
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP

Multilingual models have been widely used for the cross-lingual transfer to low-resource languages. However, the performance on these languages is hindered by their under-representation in the pretraining data. To alleviate this problem, we propose a novel multilingual training technique based on teacher-student knowledge distillation. In this setting, we utilize monolingual teacher models optimized for their language. We use those teachers along with balanced (sub-sampled) data to distill the teachers’ knowledge into a single multilingual student. Our method outperforms standard training methods in low-resource languages and retains performance on high-resource languages while using the same amount of data. If applied widely, our approach can increase the representation of low-resource languages in NLP systems.

2022

pdf bib
“Covid vaccine is against Covid but Oxford vaccine is made at Oxford!” Semantic Interpretation of Proper Noun Compounds
Keshav Kolluru | Gabriel Stanovsky | Mausam -
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Proper noun compounds, e.g., “Covid vaccine”, convey information in a succinct manner (a “Covid vaccine” is a “vaccine that immunizes against the Covid disease”). These are commonly used in short-form domains, such as news headlines, but are largely ignored in information-seeking applications. To address this limitation, we release a new manually annotated dataset, ProNCI, consisting of 22.5K proper noun compounds along with their free-form semantic interpretations. ProNCI is 60 times larger than prior noun compound datasets and also includes non-compositional examples, which have not been previously explored. We experiment with various neural models for automatically generating the semantic interpretations from proper noun compounds, ranging from few-shot prompting to supervised learning, with varying degrees of knowledge about the constituent nouns. We find that adding targeted knowledge, particularly about the common noun, results in performance gains of upto 2.8%. Finally, we integrate our model generated interpretations with an existing Open IE system and observe an 7.5% increase in yield at a precision of 85%. The dataset and code are available at https://github.com/dair-iitd/pronci.

pdf bib
GENIE: Toward Reproducible and Standardized Human Evaluation for Text Generation
Daniel Khashabi | Gabriel Stanovsky | Jonathan Bragg | Nicholas Lourie | Jungo Kasai | Yejin Choi | Noah A. Smith | Daniel Weld
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While often assumed a gold standard, effective human evaluation of text generation remains an important, open area for research.We revisit this problem with a focus on producing consistent evaluations that are reproducible—over time and across different populations. We study this goal in different stages of the human evaluation pipeline. In particular, we consider design choices for the annotation interface used to elicit human judgments and their impact on reproducibility. Furthermore, we develop an automated mechanism for maintaining annotator quality via a probabilistic model that detects and excludes noisy annotators. Putting these lessons together, we introduce GENIE: a system for running standardized human evaluations across different generation tasks.We instantiate GENIE with datasets representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension.For each task, GENIE offers a leaderboard that automatically crowdsources annotations for submissions, evaluating them along axes such as correctness, conciseness, and fluency.We have made the GENIE leaderboards publicly available, and have already ranked 50 submissions from 10 different research groups. We hope GENIE encourages further progress toward effective, standardized evaluations for text generation.

pdf bib
On the Limitations of Dataset Balancing: The Lost Battle Against Spurious Correlations
Roy Schwartz | Gabriel Stanovsky
Findings of the Association for Computational Linguistics: NAACL 2022

Recent work has shown that deep learning models in NLP are highly sensitive to low-level correlations between simple features and specific output labels, leading to over-fitting and lack of generalization. To mitigate this problem, a common practice is to balance datasets by adding new instances or by filtering out “easy” instances (Sakaguchi et al., 2020), culminating in a recent proposal to eliminate single-word correlations altogether (Gardner et al., 2021). In this opinion paper, we identify that despite these efforts, increasingly-powerful models keep exploiting ever-smaller spurious correlations, and as a result even balancing all single-word features is insufficient for mitigating all of these correlations. In parallel, a truly balanced dataset may be bound to “throw the baby out with the bathwater” and miss important signal encoding common sense and world knowledge. We highlight several alternatives to dataset balancing, focusing on enhancing datasets with richer contexts, allowing models to abstain and interact with users, and turning from large-scale fine-tuning to zero- or few-shot setups.

pdf bib
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
Christian Hardmeier | Christine Basta | Marta R. Costa-jussà | Gabriel Stanovsky | Hila Gonen
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

pdf bib
A Computational Acquisition Model for Multimodal Word Categorization
Uri Berger | Gabriel Stanovsky | Omri Abend | Lea Frermann
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent advances in self-supervised modeling of text and images open new opportunities for computational models of child language acquisition, which is believed to rely heavily on cross-modal signals. However, prior studies has been limited by their reliance on vision models trained on large image datasets annotated with a pre-defined set of depicted object categories. This is (a) not faithful to the information children receive and (b) prohibits the evaluation of such models with respect to category learning tasks, due to the pre-imposed category structure. We address this gap, and present a cognitively-inspired, multimodal acquisition model, trained from image-caption pairs on naturalistic data using cross-modal self-supervision. We show that the model learns word categories and object recognition abilities, and presents trends reminiscent of ones reported in the developmental literature.

pdf bib
A Balanced Data Approach for Evaluating Cross-Lingual Transfer: Mapping the Linguistic Blood Bank
Dan Malkin | Tomasz Limisiewicz | Gabriel Stanovsky
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We show that the choice of pretraining languages affects downstream cross-lingual transfer for BERT-based models. We inspect zero-shot performance in balanced data conditions to mitigate data size confounds, classifying pretraining languages that improve downstream performance as donors, and languages that are improved in zero-shot performance as recipients. We develop a method of quadratic time complexity in the number of languages to estimate these relations, instead of an exponential exhaustive computation of all possible combinations. We find that our method is effective on a diverse set of languages spanning different linguistic features and two downstream tasks. Our findings can inform developers of large-scale multilingual language models in choosing better pretraining configurations.

pdf bib
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
Guy Emerson | Natalie Schluter | Gabriel Stanovsky | Ritesh Kumar | Alexis Palmer | Nathan Schneider | Siddharth Singh | Shyam Ratan
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

2021

pdf bib
Process-Level Representation of Scientific Protocols with Interactive Annotation
Ronen Tamari | Fan Bai | Alan Ritter | Gabriel Stanovsky
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We develop Process Execution Graphs (PEG), a document-level representation of real-world wet lab biochemistry protocols, addressing challenges such as cross-sentence relations, long-range coreference, grounding, and implicit arguments. We manually annotate PEGs in a corpus of complex lab protocols with a novel interactive textual simulator that keeps track of entity traits and semantic constraints during annotation. We use this data to develop graph-prediction models, finding them to be good at entity identification and local relation extraction, while our corpus facilitates further exploration of challenging long-range relations.

pdf bib
Filling the Gaps in Ancient Akkadian Texts: A Masked Language Modelling Approach
Koren Lazar | Benny Saret | Asaf Yehudai | Wayne Horowitz | Nathan Wasserman | Gabriel Stanovsky
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present models which complete missing text given transliterations of ancient Mesopotamian documents, originally written on cuneiform clay tablets (2500 BCE - 100 CE). Due to the tablets’ deterioration, scholars often rely on contextual cues to manually fill in missing parts in the text in a subjective and time-consuming process. We identify that this challenge can be formulated as a masked language modelling task, used mostly as a pretraining objective for contextualized language models. Following, we develop several architectures focusing on the Akkadian language, the lingua franca of the time. We find that despite data scarcity (1M tokens) we can achieve state of the art performance on missing tokens prediction (89% hit@5) using a greedy decoding scheme and pretraining on data from other languages and different time periods. Finally, we conduct human evaluations showing the applicability of our models in assisting experts to transcribe texts in extinct languages.

pdf bib
Cross-document Coreference Resolution over Predicted Mentions
Arie Cattan | Alon Eirew | Gabriel Stanovsky | Mandar Joshi | Ido Dagan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation
Shahar Levy | Koren Lazar | Gabriel Stanovsky
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent works have found evidence of gender bias in models of machine translation and coreference resolution using mostly synthetic diagnostic datasets. While these quantify bias in a controlled experiment, they often do so on a small scale and consist mostly of artificial, out-of-distribution sentences. In this work, we find grammatical patterns indicating stereotypical and non-stereotypical gender-role assignments (e.g., female nurses versus male dancers) in corpora from three domains, resulting in a first large-scale gender bias dataset of 108K diverse real-world English sentences. We manually verify the quality of our corpus and use it to evaluate gender bias in various coreference resolution and machine translation models. We find that all tested models tend to over-rely on gender stereotypes when presented with natural inputs, which may be especially harmful when deployed in commercial systems. Finally, we show that our dataset lends itself to finetuning a coreference resolution model, finding it mitigates bias on a held out set. Our dataset and models are publicly available at github.com/SLAB-NLP/BUG. We hope they will spur future research into gender bias evaluation mitigation techniques in realistic settings.

pdf bib
Data Efficient Masked Language Modeling for Vision and Language
Yonatan Bitton | Michael Elhadad | Gabriel Stanovsky | Roy Schwartz
Findings of the Association for Computational Linguistics: EMNLP 2021

Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper, we observe several key disadvantages of MLM in this setting. First, as captions tend to be short, in a third of the sentences no token is sampled. Second, the majority of masked tokens are stop-words and punctuation, leading to under-utilization of the image. We investigate a range of alternative masking strategies specific to the cross-modal setting that address these shortcomings, aiming for better fusion of text and image in the learned representation. When pre-training the LXMERT model, our alternative masking strategies consistently improve over the original masking strategy on three downstream tasks, especially in low resource settings. Further, our pre-training approach substantially outperforms the baseline model on a prompt-based probing task designed to elicit image objects. These results and our analysis indicate that our method allows for better utilization of the training data.

pdf bib
Automatic Generation of Contrast Sets from Scene Graphs: Probing the Compositional Consistency of GQA
Yonatan Bitton | Gabriel Stanovsky | Roy Schwartz | Michael Elhadad
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent works have shown that supervised models often exploit data artifacts to achieve good test scores while their performance severely degrades on samples outside their training distribution. Contrast sets (Gardneret al., 2020) quantify this phenomenon by perturbing test samples in a minimal way such that the output label is modified. While most contrast sets were created manually, requiring intensive annotation effort, we present a novel method which leverages rich semantic input representation to automatically generate contrast sets for the visual question answering task. Our method computes the answer of perturbed questions, thus vastly reducing annotation cost and enabling thorough evaluation of models’ performance on various semantic aspects (e.g., spatial or relational reasoning). We demonstrate the effectiveness of our approach on the GQA dataset and its semantic scene graph image representation. We find that, despite GQA’s compositionality and carefully balanced label distribution, two high-performing models drop 13-17% in accuracy compared to the original test set. Finally, we show that our automatic perturbation can be applied to the training set to mitigate the degradation in performance, opening the door to more robust models.

pdf bib
Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language
Mohr Wenger | Tom Kalir | Noga Berger | Carmit Klar Chalamish | Renana Keydar | Gabriel Stanovsky
Proceedings of the Natural Legal Language Processing Workshop 2021

We present the task of Automated Punishment Extraction (APE) in sentencing decisions from criminal court cases in Hebrew. Addressing APE will enable the identification of sentencing patterns and constitute an important stepping stone for many follow up legal NLP applications in Hebrew, including the prediction of sentencing decisions. We curate a dataset of sexual assault sentencing decisions and a manually-annotated evaluation dataset, and implement rule-based and supervised models. We find that while supervised models can identify the sentence containing the punishment with good accuracy, rule-based approaches outperform them on the full APE task. We conclude by presenting a first analysis of sentencing patterns in our dataset and analyze common models’ errors, indicating avenues for future work, such as distinguishing between probation and actual imprisonment punishment. We will make all our resources available upon request, including data, annotation, and first benchmark models.

pdf bib
Realistic Evaluation Principles for Cross-document Coreference Resolution
Arie Cattan | Alon Eirew | Gabriel Stanovsky | Mandar Joshi | Ido Dagan
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology principles. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.

2020

pdf bib
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz | Gabriel Stanovsky | Swabha Swayamdipta | Jesse Dodge | Noah A. Smith
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

As NLP models become larger, executing a trained model requires significant computational resources incurring monetary and environmental costs. To better respect a given inference budget, we propose a modification to contextual representation fine-tuning which, during inference, allows for an early (and fast) “exit” from neural network calculations for simple instances, and late (and accurate) exit for hard instances. To achieve this, we add classifiers to different layers of BERT and use their calibrated confidence scores to make early exit decisions. We test our proposed modification on five different datasets in two tasks: three text classification datasets and two natural language inference benchmarks. Our method presents a favorable speed/accuracy tradeoff in almost all cases, producing models which are up to five times faster than the state of the art, while preserving their accuracy. Our method also requires almost no additional training resources (in either time or parameters) compared to the baseline BERT model. Finally, our method alleviates the need for costly retraining of multiple models at different levels of efficiency; we allow users to control the inference speed/accuracy tradeoff using a single trained model, by setting a single variable at inference time. We publicly release our code.

pdf bib
Controlled Crowdsourcing for High-Quality QA-SRL Annotation
Paul Roit | Ayal Klein | Daniela Stepanov | Jonathan Mamou | Julian Michael | Gabriel Stanovsky | Luke Zettlemoyer | Ido Dagan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question-answer driven Semantic Role Labeling (QA-SRL) was proposed as an attractive open and natural flavour of SRL, potentially attainable from laymen. Recently, a large-scale crowdsourced QA-SRL corpus and a trained parser were released. Trying to replicate the QA-SRL annotation for new texts, we found that the resulting annotations were lacking in quality, particularly in coverage, making them insufficient for further research and evaluation. In this paper, we present an improved crowdsourcing protocol for complex semantic annotation, involving worker selection and training, and a data consolidation phase. Applying this protocol to QA-SRL yielded high-quality annotation with drastically higher coverage, producing a new gold evaluation dataset. We believe that our annotation protocol and gold standard will facilitate future replicable research of natural semantic annotations.

pdf bib
Active Learning for Coreference Resolution using Discrete Annotation
Belinda Z. Li | Gabriel Stanovsky | Luke Zettlemoyer
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We improve upon pairwise annotation for active learning in coreference resolution, by asking annotators to identify mention antecedents if a presented mention pair is deemed not coreferent. This simple modification, when combined with a novel mention clustering algorithm for selecting which examples to label, is much more efficient in terms of the performance obtained per annotation budget. In experiments with existing benchmark coreference datasets, we show that the signal from this additional question leads to significant performance gains per human-annotation hour. Future work can use our annotation protocol to effectively develop coreference models for new domains. Our code is publicly available.

pdf bib
MOCHA: A Dataset for Training and Evaluating Generative Reading Comprehension Metrics
Anthony Chen | Gabriel Stanovsky | Sameer Singh | Matt Gardner
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Posing reading comprehension as a generation problem provides a great deal of flexibility, allowing for open-ended questions with few restrictions on possible answers. However, progress is impeded by existing generation metrics, which rely on token overlap and are agnostic to the nuances of reading comprehension. To address this, we introduce a benchmark for training and evaluating generative reading comprehension metrics: MOdeling Correctness with Human Annotations. MOCHA contains 40K human judgement scores on model outputs from 6 diverse question answering datasets and an additional set of minimal pairs for evaluation. Using MOCHA, we train a Learned Evaluation metric for Reading Comprehension, LERC, to mimic human judgement scores. LERC outperforms baseline metrics by 10 to 36 absolute Pearson points on held-out annotations. When we evaluate robustness on minimal pairs, LERC achieves 80% accuracy, outperforming baselines by 14 to 26 absolute percentage points while leaving significant room for improvement. MOCHA presents a challenging problem for developing accurate and robust generative reading comprehension metrics.

pdf bib
Gender Coreference and Bias Evaluation at WMT 2020
Tom Kocmi | Tomasz Limisiewicz | Gabriel Stanovsky
Proceedings of the Fifth Conference on Machine Translation

Gender bias in machine translation can manifest when choosing gender inflections based on spurious gender correlations. For example, always translating doctors as men and nurses as women. This can be particularly harmful as models become more popular and deployed within commercial systems. Our work presents the largest evidence for the phenomenon in more than 19 systems submitted to the WMT over four diverse target languages: Czech, German, Polish, and Russian. To achieve this, we use WinoMT, a recent automatic test suite which examines gender coreference and bias when translating from English to languages with grammatical gender. We extend WinoMT to handle two new languages tested in WMT: Polish and Czech. We find that all systems consistently use spurious correlations in the data rather than meaningful contextual information.

2019

pdf bib
Y’all should read this! Identifying Plurality in Second-Person Personal Pronouns in English Texts
Gabriel Stanovsky | Ronen Tamari
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Distinguishing between singular and plural “you” in English is a challenging task which has potential for downstream applications, such as machine translation or coreference resolution. While formal written English does not distinguish between these cases, other languages (such as Spanish), as well as other dialects of English (via phrases such as “y’all”), do make this distinction. We make use of this to obtain distantly-supervised labels for the task on a large-scale in two domains. Following, we train a model to distinguish between the single/plural ‘you’, finding that although in-domain training achieves reasonable accuracy (≥ 77%), there is still a lot of room for improvement, especially in the domain-transfer scenario, which proves extremely challenging. Our code and data are publicly available.

pdf bib
Evaluating Question Answering Evaluation
Anthony Chen | Gabriel Stanovsky | Sameer Singh | Matt Gardner
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

As the complexity of question answering (QA) datasets evolve, moving away from restricted formats like span extraction and multiple-choice (MC) to free-form answer generation, it is imperative to understand how well current metrics perform in evaluating QA. This is especially important as existing metrics (BLEU, ROUGE, METEOR, and F1) are computed using n-gram similarity and have a number of well-known drawbacks. In this work, we study the suitability of existing metrics in QA. For generative QA, we show that while current metrics do well on existing datasets, converting multiple-choice datasets into free-response datasets is challenging for current metrics. We also look at span-based QA, where F1 is a reasonable metric. We show that F1 may not be suitable for all extractive QA tasks depending on the answer types. Our study suggests that while current metrics may be suitable for existing QA datasets, they limit the complexity of QA datasets that can be created. This is especially true in the context of free-form QA, where we would like our models to be able to generate more complex and abstractive answers, thus necessitating new metrics that go beyond n-gram based matching. As a step towards a better QA metric, we explore using BERTScore, a recently proposed metric for evaluating translation, for QA. We find that although it fails to provide stronger correlation with human judgements, future work focused on tailoring a BERT-based metric to QA evaluation may prove fruitful.

pdf bib
On the Limits of Learning to Actively Learn Semantic Representations
Omri Koshorek | Gabriel Stanovsky | Yichu Zhou | Vivek Srikumar | Jonathan Berant
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex structures, which hinders their adoption. Learning to actively-learn(LTAL) is a recent paradigm for reducing the amount of labeled data by learning a policy that selects which samples should be labeled. In this work, we examine LTAL for learning semantic representations, such as QA-SRL. We show that even an oracle policy that is allowed to pick examples that maximize performance on the test set (and constitutes an upper bound on the potential of LTAL), does not substantially improve performance compared to a random policy. We investigate factors that could explain this finding and show that a distinguishing characteristic of successful applications of LTAL is the interaction between optimization and the oracle policy selection process. In successful applications of LTAL, the examples selected by the oracle policy do not substantially depend on the optimization procedure, while in our setup the stochastic nature of optimization strongly affects the examples selected by the oracle. We conclude that the current applicability of LTAL for improving data efficiency in learning semantic meaning representations is limited.

pdf bib
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
Dheeru Dua | Yizhong Wang | Pradeep Dasigi | Gabriel Stanovsky | Sameer Singh | Matt Gardner
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-created, 55k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs, as they remove the paraphrase-and-entity-typing shortcuts available in prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic parsing literatures on this dataset and show that the best systems only achieve 38.4% F1 on our generalized accuracy metric, while expert human performance is 96%. We additionally present a new model that combines reading comprehension methods with simple numerical reasoning to achieve 51% F1.

pdf bib
Evaluating Gender Bias in Machine Translation
Gabriel Stanovsky | Noah A. Smith | Luke Zettlemoyer
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present the first challenge set and evaluation protocol for the analysis of gender bias in machine translation (MT). Our approach uses two recent coreference resolution datasets composed of English sentences which cast participants into non-stereotypical gender roles (e.g., “The doctor asked the nurse to help her in the operation”). We devise an automatic gender bias evaluation method for eight target languages with grammatical gender, based on morphological analysis (e.g., the use of female inflection for the word “doctor”). Our analyses show that four popular industrial MT systems and two recent state-of-the-art academic MT models are significantly prone to gender-biased translation errors for all tested target languages. Our data and code are publicly available at https://github.com/gabrielStanovsky/mt_gender.

pdf bib
SemEval-2019 Task 10: Math Question Answering
Mark Hopkins | Ronan Le Bras | Cristian Petrescu-Prahova | Gabriel Stanovsky | Hannaneh Hajishirzi | Rik Koncel-Kedziorski
Proceedings of the 13th International Workshop on Semantic Evaluation

We report on the SemEval 2019 task on math question answering. We provided a question set derived from Math SAT practice exams, including 2778 training questions and 1082 test questions. For a significant subset of these questions, we also provided SMT-LIB logical form annotations and an interpreter that could solve these logical forms. Systems were evaluated based on the percentage of correctly answered questions. The top system correctly answered 45% of the test questions, a considerable improvement over the 17% random guessing baseline.

2018

pdf bib
Spot the Odd Man Out: Exploring the Associative Power of Lexical Resources
Gabriel Stanovsky | Mark Hopkins
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose Odd-Man-Out, a novel task which aims to test different properties of word representations. An Odd-Man-Out puzzle is composed of 5 (or more) words, and requires the system to choose the one which does not belong with the others. We show that this simple setup is capable of teasing out various properties of different popular lexical resources (like WordNet and pre-trained word embeddings), while being intuitive enough to annotate on a large scale. In addition, we propose a novel technique for training multi-prototype word representations, based on unsupervised clustering of ELMo embeddings, and show that it surpasses all other representations on all Odd-Man-Out collections.

pdf bib
Semantics as a Foreign Language
Gabriel Stanovsky | Ido Dagan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose a novel approach to semantic dependency parsing (SDP) by casting the task as an instance of multi-lingual machine translation, where each semantic representation is a different foreign dialect. To that end, we first generalize syntactic linearization techniques to account for the richer semantic dependency graph structure. Following, we design a neural sequence-to-sequence framework which can effectively recover our graph linearizations, performing almost on-par with previous SDP state-of-the-art while requiring less parallel training annotations. Beyond SDP, our linearization technique opens the door to integration of graph-based semantic representations as features in neural models for downstream applications.

pdf bib
Supervised Open Information Extraction
Gabriel Stanovsky | Julian Michael | Luke Zettlemoyer | Ido Dagan
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present data and methods that enable a supervised learning approach to Open Information Extraction (Open IE). Central to the approach is a novel formulation of Open IE as a sequence tagging problem, addressing challenges such as encoding multiple extractions for a predicate. We also develop a bi-LSTM transducer, extending recent deep Semantic Role Labeling models to extract Open IE tuples and provide confidence scores for tuning their precision-recall tradeoff. Furthermore, we show that the recently released Question-Answer Meaning Representation dataset can be automatically converted into an Open IE corpus which significantly increases the amount of available training data. Our supervised model outperforms the existing state-of-the-art Open IE systems on benchmark datasets.

pdf bib
Crowdsourcing Question-Answer Meaning Representations
Julian Michael | Gabriel Stanovsky | Luheng He | Ido Dagan | Luke Zettlemoyer
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We introduce Question-Answer Meaning Representations (QAMRs), which represent the predicate-argument structure of a sentence as a set of question-answer pairs. We develop a crowdsourcing scheme to show that QAMRs can be labeled with very little training, and gather a dataset with over 5,000 sentences and 100,000 questions. A qualitative analysis demonstrates that the crowd-generated question-answer pairs cover the vast majority of predicate-argument relationships in existing datasets (including PropBank, NomBank, and QA-SRL) along with many previously under-resourced ones, including implicit arguments and relations. We also report baseline models for question generation and answering, and summarize a recent approach for using QAMR labels to improve an Open IE system. These results suggest the freely available QAMR data and annotation scheme should support significant future work.

2017

pdf bib
Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models
Gabriel Stanovsky | Daniel Gruhl | Pablo Mendes
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Recognizing mentions of Adverse Drug Reactions (ADR) in social media is challenging: ADR mentions are context-dependent and include long, varied and unconventional descriptions as compared to more formal medical symptom terminology. We use the CADEC corpus to train a recurrent neural network (RNN) transducer, integrated with knowledge graph embeddings of DBpedia, and show the resulting model to be highly accurate (93.4 F1). Furthermore, even when lacking high quality expert annotations, we show that by employing an active learning technique and using purpose built annotation tools, we can train the RNN to perform well (83.9 F1).

pdf bib
Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets
Gabriel Stanovsky | Judith Eckle-Kohler | Yevgeniy Puzikov | Ido Dagan | Iryna Gurevych
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.

pdf bib
Acquiring Predicate Paraphrases from News Tweets
Vered Shwartz | Gabriel Stanovsky | Ido Dagan
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

We present a simple method for ever-growing extraction of predicate paraphrases from news headlines in Twitter. Analysis of the output of ten weeks of collection shows that the accuracy of paraphrases with different support levels is estimated between 60-86%. We also demonstrate that our resource is to a large extent complementary to existing resources, providing many novel paraphrases. Our resource is publicly available, continuously expanding based on daily news.

pdf bib
A Consolidated Open Knowledge Representation for Multiple Texts
Rachel Wities | Vered Shwartz | Gabriel Stanovsky | Meni Adler | Ori Shapira | Shyam Upadhyay | Dan Roth | Eugenio Martinez Camara | Iryna Gurevych | Ido Dagan
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics

We propose to move from Open Information Extraction (OIE) ahead to Open Knowledge Representation (OKR), aiming to represent information conveyed jointly in a set of texts in an open text-based manner. We do so by consolidating OIE extractions using entity and predicate coreference, while modeling information containment between coreferring elements via lexical entailment. We suggest that generating OKR structures can be a useful step in the NLP pipeline, to give semantic applications an easy handle on consolidated information across multiple texts.

2016

pdf bib
Modeling Extractive Sentence Intersection via Subtree Entailment
Omer Levy | Ido Dagan | Gabriel Stanovsky | Judith Eckle-Kohler | Iryna Gurevych
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Sentence intersection captures the semantic overlap of two texts, generalizing over paradigms such as textual entailment and semantic text similarity. Despite its modeling power, it has received little attention because it is difficult for non-experts to annotate. We analyze 200 pairs of similar sentences and identify several underlying properties of sentence intersection. We leverage these insights to design an algorithm that decomposes the sentence intersection task into several simpler annotation tasks, facilitating the construction of a high quality dataset via crowdsourcing. We implement this approach and provide an annotated dataset of 1,764 sentence intersections.

pdf bib
Porting an Open Information Extraction System from English to German
Tobias Falke | Gabriel Stanovsky | Iryna Gurevych | Ido Dagan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Creating a Large Benchmark for Open Information Extraction
Gabriel Stanovsky | Ido Dagan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Annotating and Predicting Non-Restrictive Noun Phrase Modifications
Gabriel Stanovsky | Ido Dagan
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Specifying and Annotating Reduced Argument Span Via QA-SRL
Gabriel Stanovsky | Ido Dagan | Meni Adler
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2015

pdf bib
Open IE as an Intermediate Structure for Semantic Tasks
Gabriel Stanovsky | Ido Dagan | Mausam
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Intermediary Semantic Representation through Proposition Structures
Gabriel Stanovsky | Jessica Ficler | Ido Dagan | Yoav Goldberg
Proceedings of the ACL 2014 Workshop on Semantic Parsing

pdf bib
Proposition Knowledge Graphs
Gabriel Stanovsky | Omer Levy | Ido Dagan
Proceedings of the First AHA!-Workshop on Information Discovery in Text

Search
Co-authors
Fix data